link.springer.com

Dilaton gravity with a boundary: from unitarity to black hole evaporation - Journal of High Energy Physics

  • ️Zenkevich, Yegor
  • ️Tue Jun 30 2020
  • C. Teitelboim, Gravitation and Hamiltonian structure in two space-time dimensions, Phys. Lett. B 126 (1983) 41 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • R. Jackiw, Lower Dimensional Gravity, Nucl. Phys. B 252 (1985) 343 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • D. Cangemi and R. Jackiw, Gauge invariant formulations of lineal gravity, Phys. Rev. Lett. 69 (1992) 233 [hep-th/9203056] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • S. Dubovsky, V. Gorbenko and M. Mirbabayi, Asymptotic fragility, near AdS2 holography and \( T\overline{T} \), JHEP 09 (2017) 136 [arXiv:1706.06604] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • S. Dubovsky, V. Gorbenko and G. Hernández-Chifflet, \( T\overline{T} \) partition function from topological gravity, JHEP 09 (2018) 158 [arXiv:1805.07386] [INSPIRE].

  • P. Saad, S.H. Shenker and D. Stanford, JT gravity as a matrix integral, arXiv:1903.11115 [INSPIRE].

  • D. Stanford and E. Witten, JT gravity and the ensembles of random matrix theory, arXiv:1907.03363 [INSPIRE].

  • S.W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].

  • S.W. Hawking, Breakdown of predictability in gravitational collapse, Phys. Rev. D 14 (1976) 2460 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • J.M. Maldacena, Eternal black holes in Anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • G. Penington, Entanglement wedge reconstruction and the information paradox, arXiv:1905.08255 [INSPIRE].

  • A. Almheiri, N. Engelhardt, D. Marolf and H. Maxfield, The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole, JHEP 12 (2019) 063 [arXiv:1905.08762] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • G. Penington, S.H. Shenker, D. Stanford and Z. Yang, Replica wormholes and the black hole interior, arXiv:1911.11977 [INSPIRE].

  • F.F. Gautason, L. Schneiderbauer, W. Sybesma and L. Thorlacius, Page curve for an evaporating black hole, JHEP 05 (2020) 091 [arXiv:2004.00598] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black holes: complementarity or firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Y. Zeldovich, A new type of radioactive decay: gravitational annihilation of baryons, Phys. Lett. A 59 (1976) 254 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • S.R. Coleman and S. Hughes, Black holes, wormholes and the disappearance of global charge, Phys. Lett. B 309 (1993) 246 [hep-th/9305123] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • D. Stojkovic, F.C. Adams and G.D. Starkman, Information-preserving black holes still do not preserve baryon number and other effective global quantum numbers, Int. J. Mod. Phys. D 14 (2005) 2293 [gr-qc/0604072] [INSPIRE].

  • J.G. Russo, L. Susskind and L. Thorlacius, The endpoint of Hawking radiation, Phys. Rev. D 46 (1992) 3444 [hep-th/9206070] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • C.G. Callan Jr., S.B. Giddings, J.A. Harvey and A. Strominger, Evanescent black holes, Phys. Rev. D 45 (1992) 1005 [hep-th/9111056] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • A. Strominger, Faddeev-Popov ghosts and (1 + 1)-dimensional black hole evaporation, Phys. Rev. D 46 (1992) 4396 [hep-th/9205028] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • S. Dubovsky, private communication.

  • T. Banks, A. Dabholkar, M.R. Douglas and M. O’Loughlin, Are horned particles the climax of Hawking evaporation?, Phys. Rev. D 45 (1992) 3607 [hep-th/9201061] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • J.G. Russo, L. Susskind and L. Thorlacius, Black hole evaporation in (1 + 1)-dimensions, Phys. Lett. B 292 (1992) 13 [hep-th/9201074] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • L. Thorlacius, Black hole evolution, Nucl. Phys. B Proc. Suppl. 41 (1995) 245 [hep-th/9411020] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • S.P. de Alwis, Quantization of a theory of 2D dilaton gravity, Phys. Lett. B 289 (1992) 278 [hep-th/9205069] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • J. Brown, M. Henneaux and C. Teitelboim, Black holes in two space-time dimensions, Phys. Rev. D 33 (1986) 319 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • A. Almheiri and J. Sully, An uneventful horizon in two dimensions, JHEP 02 (2014) 108 [arXiv:1307.8149] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • J.G. Russo, L. Susskind and L. Thorlacius, Cosmic censorship in two-dimensional gravity, Phys. Rev. D 47 (1993) 533 [hep-th/9209012] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • T.D. Chung and H.L. Verlinde, Dynamical moving mirrors and black holes, Nucl. Phys. B 418 (1994) 305 [hep-th/9311007] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • A.M. Polyakov, Quantum geometry of bosonic strings, Phys. Lett. B 103 (1981) 207 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • J. Polchinski, String theory. Volume 1: an introduction to the bosonic string, Cambridge University Press, Cambridge U.K. (1998).

  • A. Strominger and L. Thorlacius, Conformally invariant boundary conditions for dilaton gravity, Phys. Rev. D 50 (1994) 5177 [hep-th/9405084] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • S.R. Das and S. Mukherji, Boundary dynamics in dilaton gravity, Mod. Phys. Lett. A 9 (1994) 3105 [hep-th/9407015] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • E.P. Verlinde and H.L. Verlinde, A unitary S matrix and 2D black hole formation and evaporation, Nucl. Phys. B 406 (1993) 43 [hep-th/9302022] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • S. Bose, L. Parker and Y. Peleg, Hawking radiation and unitary evolution, Phys. Rev. Lett. 76 (1996) 861 [gr-qc/9508027] [INSPIRE].

  • S. Bose, L. Parker and Y. Peleg, Predictability and semiclassical approximation at the onset of black hole formation, Phys. Rev. D 54 (1996) 7490 [hep-th/9606152] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • M. Fitkevich, D. Levkov and Y. Zenkevich, Exact solutions and critical chaos in dilaton gravity with a boundary, JHEP 04 (2017) 108 [arXiv:1702.02576] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • A. Strominger, Les Houches lectures on black holes, hep-th/9501071 [INSPIRE].

  • C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys. B 424 (1994) 443 [hep-th/9403108] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • E. Bianchi, T. De Lorenzo and M. Smerlak, Entanglement entropy production in gravitational collapse: covariant regularization and solvable models, JHEP 06 (2015) 180 [arXiv:1409.0144] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  • M.R.R. Good, K. Yelshibekov and Y.C. Ong, On horizonless temperature with an accelerating mirror, JHEP 03 (2017) 013 [arXiv:1611.00809] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • A. Ashtekar, F. Pretorius and F.M. Ramazanoglu, Surprises in the evaporation of 2-dimensional black holes, Phys. Rev. Lett. 106 (2011) 161303 [arXiv:1011.6442] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • A. Ashtekar, F. Pretorius and F.M. Ramazanoglu, Evaporation of 2-dimensional black holes, Phys. Rev. D 83 (2011) 044040 [arXiv:1012.0077] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • D. Grumiller, W. Kummer and D.V. Vassilevich, Dilaton gravity in two-dimensions, Phys. Rept. 369 (2002) 327 [hep-th/0204253] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • H. Afshar, H.A. González, D. Grumiller and D. Vassilevich, Flat space holography and the complex Sachdev-Ye-Kitaev model, Phys. Rev. D 101 (2020) 086024 [arXiv:1911.05739] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • D.V. Eremeev, Dilaton gravity with a boundary (in Russian), M.Sc. thesis, Moscow State University, Russia (2017).

    MATH  Google Scholar 

  • G.W. Gibbons and S.W. Hawking, Action Integrals and Partition Functions in Quantum Gravity, Phys. Rev. D 15 (1977) 2752 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • E. Poisson, A relativist’s toolkit. the mathematics of black-hole mechanics, Cambridge University Press, Cambridge U.K. (2004).

  • P.C.W. Davies and S.A. Fulling, Radiation from a moving mirror in two-dimensional space-time conformal anomaly, Proc. Roy. Soc. Lond. A A 348 (1976) 393 [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  • F. Wilczek, Quantum purity at a small price: easing a black hole paradox, hep-th/9302096 [INSPIRE].

  • E. Bianchi and M. Smerlak, Entanglement entropy and negative energy in two dimensions, Phys. Rev. D 90 (2014) 041904 [arXiv:1404.0602] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • E. Bianchi and M. Smerlak, Last gasp of a black hole: unitary evaporation implies non-monotonic mass loss, Gen. Rel. Grav. 46 (2014) 1809 [arXiv:1405.5235] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • M.R.R. Good, E.V. Linder and F. Wilczek, Moving mirror model for quasithermal radiation fields, Phys. Rev. D 101 (2020) 025012 [arXiv:1909.01129] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • A. Anderson and B.S. DeWitt, Does the topology of space fluctuate?, Found. Phys. 16 (1986) 91 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • A. Ishibashi and A. Hosoya, Naked singularity and thunderbolt, Phys. Rev. D 66 (2002) 104016 [gr-qc/0207054] [INSPIRE].

  • T.M. Fiola, J. Preskill, A. Strominger and S.P. Trivedi, Black hole thermodynamics and information loss in two-dimensions, Phys. Rev. D 50 (1994) 3987 [hep-th/9403137] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • R.C. Myers, Black hole entropy in two-dimensions, Phys. Rev. D 50 (1994) 6412 [hep-th/9405162] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • M. Fitkevich, D. Levkov and S. Sibiryakov, Semiclassical \( \mathcal{S} \)-matrix and black hole entropy in dilaton gravity, arXiv:2006.03606 [INSPIRE].

  • S.N. Solodukhin, Two-dimensional quantum corrected eternal black hole, Phys. Rev. D 53 (1996) 824 [hep-th/9506206] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • J.D. Hayward, Entropy in the RST model, Phys. Rev. D 52 (1995) 2239 [gr-qc/9412065] [INSPIRE].

  • F. Bezrukov, D. Levkov and S. Sibiryakov, Semiclassical S-matrix for black holes, JHEP 12 (2015) 002 [arXiv:1503.07181] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  • I. Affleck, On constrained instantons, Nucl. Phys. B 191 (1981) 429 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • D.G. Levkov, A.G. Panin and S.M. Sibiryakov, Unstable semiclassical trajectories in tunneling, Phys. Rev. Lett. 99 (2007) 170407 [arXiv:0707.0433] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  • V.A. Rubakov and M.E. Shaposhnikov, Electroweak baryon number nonconservation in the early universe and in high-energy collisions, Usp. Fiz. Nauk 166 (1996) 493 [hep-ph/9603208] [INSPIRE].

  • M.K. Parikh and F. Wilczek, Hawking radiation as tunneling, Phys. Rev. Lett. 85 (2000) 5042 [hep-th/9907001] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • O. Klein, Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac, Z. Phys. 53 (1929) 157 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar