link.springer.com

Flux quantization on M5-branes - Journal of High Energy Physics

  • ️Schreiber, Urs
  • ️Tue Oct 22 2024
  • G.S. Adkins, C.R. Nappi and E. Witten, Static Properties of Nucleons in the Skyrme Model, Nucl. Phys. B 228 (1983) 552 [INSPIRE].

  • M. Aganagic, J. Park, C. Popescu and J.H. Schwarz, World volume action of the M theory five-brane, Nucl. Phys. B 496 (1997) 191 [hep-th/9701166] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043 [arXiv:0807.4924] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • O. Aharony et al., Large N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • J. Alicea, M. Fisher, M. Franz, and Y.-B. Kim, Strongly Interacting Topological Phases, report on Banff workshop 15w5051 (2015), [ncatlab.org/nlab/files/AliceaEtAl-InteractingTopPhases.pdf]

  • O. Alvarez, Cohomology and field theory, in the proceedings of the Symposium on Anomalies, Geometry, Topology, Argonne, U.S.A., March 28–30 (1985) [INSPIRE].

  • O. Alvarez, Topological Quantization and Cohomology, Commun. Math. Phys. 100 (1985) 279 [INSPIRE].

  • https://ncatlab.org/schreiber/show/Flux+Quantization+on+M5-Branes#Anc.

  • L. Andrianopoli et al., M5-brane in the superspace approach, Phys. Rev. D 106 (2022) 026010 [arXiv:2206.06388] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • R. Aurich and S. Lustig, A survey of lens spaces and large scale CMB anisotropy, Mon. Not. Roy. Astron. Soc. 424 (2012) 1556 [arXiv:1203.4086] [INSPIRE].

    Article  ADS  Google Scholar 

  • A.P. Bakulev and D.V. Shirkov, Inevitability and Importance of Non-Perturbative Elements in Quantum Field Theory, in the proceedings of the 6th Summer School in Modern Mathematical Physics, Belgrade, Serbia, September 14–23 (2010) [arXiv:1102.2380] [INSPIRE].

  • I.A. Bandos, Superembedding approach to Dp-branes, M-branes and multiple D(0)-brane systems, Phys. Part. Nucl. Lett. 8 (2011) 149 [arXiv:0912.2530] [INSPIRE].

    Article  Google Scholar 

  • I.A. Bandos et al., Covariant action for the superfive-brane of M theory, Phys. Rev. Lett. 78 (1997) 4332 [hep-th/9701149] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • I.A. Bandos et al., Superstrings and supermembranes in the doubly supersymmetric geometrical approach, Nucl. Phys. B 446 (1995) 79 [hep-th/9501113] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • I.A. Bandos and D.P. Sorokin, Superembedding Approach to Superstrings and Super-p-branes, in Handbook of Quantum Gravity, Springer (2023), https://doi.org/10.1007/978-981-19-3079-9_111-1 [arXiv:2301.10668] [INSPIRE].

  • R.A. Battye, N.S. Manton and P.M. Sutcliffe, Skyrmions and Nuclei, in The multifaceted skyrmion, G.E. Brown and M. Rho eds., World Scientific (2010), p. 3–39 [https://doi.org/10.1142/9789814280709_0001] [INSPIRE].

  • D. Belov and G.W. Moore, Holographic Action for the Self-Dual Field, hep-th/0605038 [INSPIRE].

  • E. Bergshoeff, D.S. Berman, J.P. van der Schaar and P. Sundell, A noncommutative M theory five-brane, Nucl. Phys. B 590 (2000) 173 [hep-th/0005026] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • E.A. Bergshoeff, G.W. Gibbons and P.K. Townsend, Open M5-branes, Phys. Rev. Lett. 97 (2006) 231601 [hep-th/0607193] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • D.S. Berman, M-theory branes and their interactions, Phys. Rept. 456 (2008) 89 [arXiv:0710.1707] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • R. Blumenhagen, D. Lüst and S. Theisen, Basic concepts of string theory, Springer, Heidelberg, Germany (2013) [https://doi.org/10.1007/978-3-642-29497-6] [INSPIRE].

  • E. Berger, R. Bryant and P. Griffiths, The Gauss equations and rigidity of isometric embeddings, Duke Math. J. 50 (1983) 803.

  • W.M. Boothby, An introduction to differentiable manifolds and Riemannian geometry, Academic Press (1975, 1986), Elsevier (2002), ISBN:9780121160517, https://shop.elsevier.com/books/an-introduction-to-differentiable-manifolds-and-riemannian-geometry-revised/boothby/978-0-08-057475-2.

  • N. Brambilla et al., QCD and Strongly Coupled Gauge Theories: Challenges and Perspectives, Eur. Phys. J. C 74 (2014) 2981 [arXiv:1404.3723] [INSPIRE].

    Article  Google Scholar 

  • L. Brink and P.S. Howe, Eleven-Dimensional Supergravity on the Mass-Shell in Superspace, Phys. Lett. B 91 (1980) 384 [INSPIRE].

  • R. Brooks, F. Muhammad and S.J. Gates, Matter Coupled to D = 2 Simple Unidexterous Supergravity, Local (Supersymmetry)**2 and Strings, Class. Quant. Grav. 3 (1986) 745 [INSPIRE].

  • S. Burton, H. Sati and U. Schreiber, Lift of fractional D-brane charge to equivariant Cohomotopy theory, J. Geom. Phys. 161 (2021) 104034 [arXiv:1812.09679] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • É. Cartan Riemannian Geometry in an Orthogonal Frame, translated by V. Goldberg from Cartan’s lectures at the Sorbonne in 1926–1927, World Scientific (2001) [https://doi.org/10.1142/4808].

  • L. Castellani, R. D’Auria and P. Fré, Supergravity and Superstrings: A Geometric Perspective: (In 3 Volumes), World Scientific (1991) [https://doi.org/10.1142/0224].

  • I. Chavel, Riemannian Geometry: A Modern Introduction, Cambridge University Press (2006) [https://doi.org/10.1017/cbo9780511616822].

  • G.-Q.G. Chen and T.P. Giron, Weak continuity of curvature for connections in Lp, arXiv:2108.13529.

  • G.Y. Cho, D. Gang and H.-C. Kim, M-theoretic Genesis of Topological Phases, JHEP 11 (2020) 115 [arXiv:2007.01532] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • D. Corfield, H. Sati and U. Schreiber, Fundamental weight systems are quantum states, Lett. Math. Phys. 113 (2023) 112 [arXiv:2105.02871] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • E. Cremmer and S. Ferrara, Formulation of Eleven-Dimensional Supergravity in Superspace, Phys. Lett. B 91 (1980) 61 [INSPIRE].

  • E. Cremmer, B. Julia, H. Lu and C.N. Pope, Dualization of dualities. 2. Twisted self-duality of doubled fields, and superdualities, Nucl. Phys. B 535 (1998) 242 [hep-th/9806106] [INSPIRE].

  • P. Claus et al., Conformal theory of M2, D3, M5 and D1-branes + D5-branes, JHEP 06 (1998) 004 [hep-th/9801206] [INSPIRE].

    Article  ADS  Google Scholar 

  • P. Claus, R. Kallosh and A. Van Proeyen, M five-brane and superconformal (0,2) tensor multiplet in six-dimensions, Nucl. Phys. B 518 (1998) 117 [hep-th/9711161] [INSPIRE].

    Article  ADS  Google Scholar 

  • J. de Boer and M. Shigemori, Exotic Branes in String Theory, Phys. Rept. 532 (2013) 65 [arXiv:1209.6056] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • E. D’Hoker et al., Half-BPS supergravity solutions and superalgebras, JHEP 12 (2008) 047 [arXiv:0810.1484] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • E. Diaconescu, G.W. Moore and D.S. Freed, The M theory three form and E(8) gauge theory, hep-th/0312069 [INSPIRE].

  • P.A.M. Dirac, Quantised singularities in the electromagnetic field,, Proc. Roy. Soc. Lond. A 133 (1931) 60 [INSPIRE].

  • J. Dixmier, Unitary representations of locally compact groups, chapter 13 in: C-algebras, North Holland (1977), https://ncatlab.org/nlab/files/Dixmier-CStarAlgebras-UnitaryReps.pdf.

  • M.J. Duff, M Theory (The Theory Formerly Known as Strings), Int. J. Mod. Phys. A 11 (1996) 5623 [hep-th/9608117] [INSPIRE].

  • M.J. Duff, The World in Eleven Dimensions, CRC Press (2014) [INSPIRE].

  • P. Etingof et al., Introduction to representation theory, arXiv:0901.0827.

  • A. Ferraz, K.S. Gupta, G.W. Semenoff and P. Sodano, Strongly Coupled Field Theories for Condensed Matter and Quantum Information Theory. Proceedings, International Institute of Physics, Natal, Rn, Brazil, 2–21 August 2015, Springer (2020) [DOI:10.1007/978-3-030-35473-2] [INSPIRE].

  • D. Fiorenza, H. Sati and U. Schreiber, Extended higher cup-product Chern-Simons theories, J. Geom. Phys. 74 (2013) 130 [arXiv:1207.5449] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • D. Fiorenza, H. Sati and U. Schreiber, A higher stacky perspective on Chern-Simons theory, in the proceedings of the Winter School in Mathematical Physics: Mathematical Aspects of Quantum Field Theory, Les Houches, France, January 29 – February 03 (2012) [https://doi.org/10.1007/978-3-319-09949-1_6] [arXiv:1301.2580] [INSPIRE].

  • D. Fiorenza, H. Sati and U. Schreiber, The Wess-Zumino-Witten term of the M5-brane and differential cohomotopy, J. Math. Phys. 56 (2015) 102301 [arXiv:1506.07557] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • D. Fiorenza, H. Sati and U. Schreiber, Super-exceptional geometry: origin of heterotic M-theory and super-exceptional embedding construction of M5, JHEP 02 (2020) 107 [arXiv:1908.00042] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • D. Fiorenza, H. Sati and U. Schreiber, Twisted Cohomotopy implies M-theory anomaly cancellation on 8-manifolds, Commun. Math. Phys. 377 (2020) 1961 [arXiv:1904.10207] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • D. Fiorenza, H. Sati and U. Schreiber, Twisted Cohomotopy implies level quantization of the full 6d Wess-Zumino term of the M5-brane, Commun. Math. Phys. 384 (2021) 403 [arXiv:1906.07417] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • D. Fiorenza, H. Sati and U. Schreiber, Super-exceptional embedding construction of the heterotic M5: Emergence of SU(2)-flavor sector, J. Geom. Phys. 170 (2021) 104349 [arXiv:2006.00012] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • D. Fiorenza, H. Sati and U. Schreiber, Twisted Cohomotopy implies twisted String structure on M5-branes, J. Math. Phys. 62 (2021) 042301 [arXiv:2002.11093] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • D. Fiorenza, H. Sati and U. Schreiber, Twistorial cohomotopy implies Green–Schwarz anomaly cancellation, Rev. Math. Phys. 34 (2022) 2250013 [arXiv:2008.08544] [INSPIRE].

  • D. Fiorenza, H. Sati and U. Schreiber, The character map in (twisted differential) non-abelian cohomology, arXiv:2009.11909 [https://doi.org/10.1142/13422] [INSPIRE].

  • R. Fox and L. Neuwirth, The Braid Groups, Math. Scand. 10 (1962) 119.

  • D.S. Freed, G.W. Moore and G. Segal, Heisenberg Groups and Noncommutative Fluxes, Annals Phys. 322 (2007) 236 [hep-th/0605200] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • M.H. Freedman, A. Kitaev, M.J. Larsen and Z. Wang, Topological Quantum Computation, quant-ph/0101025 [INSPIRE].

  • O. Ganor and L. Motl, Equations of the (2,0) theory and knitted five-branes, JHEP 05 (1998) 009 [hep-th/9803108] [INSPIRE].

    Article  ADS  Google Scholar 

  • S.J. Gates Jr. and H. Nishino, D = 2 Superfield Supergravity, Local (Supersymmetry)**2 and Nonlinear σ Models, Class. Quant. Grav. 3 (1986) 391 [INSPIRE].

  • I. Gelfand and D. Raikov, Irreducible unitary representations of locally bicompact groups, Rec. Math. (Mat. Sbornik) 13 (1943) 301, https://www.mathnet.ru/eng/sm6181.

  • G. Giotopoulos and H. Sati, Field Theory via Higher Geometry I: Smooth Sets of Fields, arXiv:2312.16301 [INSPIRE].

  • G. Giotopoulos, H. Sati and U. Schreiber, Flux quantization on 11-dimensional superspace, JHEP 07 (2024) 082 [arXiv:2403.16456] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • G. Giotopoulos, H. Sati and U. Schreiber, Holographic M-Brane Super-Embeddings, arXiv:2408.09921 [INSPIRE].

  • G. Giotopoulos, H. Sati and U. Schreiber, M5 Super-Embeddings into Exceptional Super-Spacetime, in preparation.

  • G. Giotopoulos, H. Sati, and U. Schreiber, Field Theory via Higher Geometry II: Super-sets of fermionic fields, (in preparation).

  • T. p. Giron, On the Analysis of Isometric Immersions of Riemannian Manifolds, PhD thesis, Oxford U., (2020).

  • E. Gorbatov et al., On heterotic orbifolds, M theory and type I-prime brane engineering, JHEP 05 (2002) 015 [hep-th/0108135] [INSPIRE].

  • D. Grady and H. Sati, Differential cohomotopy versus differential cohomology for M-theory and differential lifts of Postnikov towers, J. Geom. Phys. 165 (2021) 104203 [arXiv:2001.07640] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • D. Grady and H. Sati, Ramond–Ramond fields and twisted differential K-theory, Adv. Theor. Math. Phys. 26 (2022) 1097 [arXiv:1903.08843] [INSPIRE].

  • P. Griffiths and J. Harris, Algebraic geometry and local differential geometry, Ann. Scient. l’École Norm. Sup., Serie 4, 12 3 (1979) 355, http://www.numdam.org/item/?id=ASENS_1979_4_12_3_355_0.

  • H. Guggenheimer, Differential Geometry, Dover (1977), [ISBN:9780486634333], [ark:/13960/t9t22sk9n].

  • Q. Han and M. Lewicka, Isometric immersions and applications, Notices AMS 2023, [arXiv:2310.02566].

  • S.A. Hartnoll, A. Lucas and S. Sachdev, Holographic quantum matter, arXiv:1612.07324 [INSPIRE].

  • J.J. Heckman et al., Pixelated Dark Energy, Fortsch. Phys. 67 (2019) 1900071 [arXiv:1901.10489] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • J.J. Heckman and T. Rudelius, Top Down Approach to 6D SCFTs, J. Phys. A 52 (2019) 093001 [arXiv:1805.06467] [INSPIRE].

    Article  ADS  Google Scholar 

  • M. Henneaux and C. Teitelboim, Dynamics of Chiral (Selfdual) P Forms, Phys. Lett. B 206 (1988) 650 [INSPIRE].

  • S. Hollands and R.M. Wald, Quantum fields in curved spacetime, Phys. Rept. 574 (2015) 1 [arXiv:1401.2026] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • P. Horava and E. Witten, Heterotic and Type I string dynamics from eleven dimensions, Nucl. Phys. B 460 (1996) 506 [hep-th/9510209] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • M.J. Duff and J.X. Lu, Black and super p-branes in diverse dimensions, Nucl. Phys. B 416 (1994) 301 [hep-th/9306052] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • P.S. Howe, O. Raetzel and E. Sezgin, On brane actions and superembeddings, JHEP 08 (1998) 011 [hep-th/9804051] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • P.S. Howe and E. Sezgin, Superbranes, Phys. Lett. B 390 (1997) 133 [hep-th/9607227] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • P.S. Howe and E. Sezgin, D = 11, p = 5, Phys. Lett. B 394 (1997) 62 [hep-th/9611008] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • P.S. Howe, E. Sezgin, P.C. West and M. Dine, Covariant field equations of the M-theory five-brane, Phys. Lett. B 399 (1997) 49 [hep-th/9702008] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • P.S. Howe, E. Sezgin and P.C. West, The Six-dimensional selfdual tensor, Phys. Lett. B 400 (1997) 255 [hep-th/9702111] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • P.S. Howe, E. Sezgin and P.C. West, Aspects of superembeddings, Lect. Notes Phys. 509 (1998) 64 [hep-th/9705093] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • J. Huerta, H. Sati and U. Schreiber, Real ADE-equivariant (co)homotopy and Super M-branes, Commun. Math. Phys. 371 (2019) 425 [arXiv:1805.05987] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • J. Huerta and U. Schreiber, M-theory from the Superpoint, Lett. Math. Phys. 108 (2018) 2695 [arXiv:1702.01774] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • K.A. Intriligator, Anomaly matching and a Hopf-Wess-Zumino term in 6d, N=(2,0) field theories, Nucl. Phys. B 581 (2000) 257 [hep-th/0001205] [INSPIRE].

    Article  ADS  Google Scholar 

  • T.A. Ivanova, O. Lechtenfeld and A.D. Popov, Skyrme model from 6d \( \mathcal{N} \)= (2,0) theory, Phys. Lett. B 783 (2018) 222 [arXiv:1805.07241] [INSPIRE].

  • J. Kaidi, K. Ohmori, Y. Tachikawa and K. Yonekura, Nonsupersymmetric Heterotic Branes, Phys. Rev. Lett. 131 (2023) 121601 [arXiv:2303.17623] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • N. Kayban, Riemannian Immersions and Submersions, (2021), https://ncatlab.org/nlab/files/Kayban-RiemannianImmersions.pdf.

  • N. Lambert, M-Branes: Lessons from M2’s and Hopes for M5’s, Fortsch. Phys. 67 (2019) 1910011 [arXiv:1903.02825] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • N. Lambert, (2,0) Lagrangian Structures, Phys. Lett. B 798 (2019) 134948 [arXiv:1908.10752] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • J.M. Lee, Introduction to Smooth Manifolds, Springer New York (2012) [https://doi.org/10.1007/978-1-4419-9982-5].

  • J.M. Lee, Introduction to Riemannian Manifolds, Springer International Publishing (2018) [https://doi.org/10.1007/978-3-319-91755-9].

  • N.S. Manton, Skyrmions – A Theory of Nuclei, World Scientific (2022) [https://doi.org/10.1142/q0368] [INSPIRE].

  • P. Mastrolia, M. Rigoli and A.G. Setti, Yamabe-type Equations on Complete, Noncompact Manifolds, Springer Basel (2012) [https://doi.org/10.1007/978-3-0348-0376-2].

  • V. Mathai and H. Sati, Higher abelian gauge theory associated to gerbes on noncommutative deformed M5-branes and S-duality, J. Geom. Phys. 92 (2015) 240 [arXiv:1404.2257] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • A. Miemiec and I. Schnakenburg, Basics of M-theory, Fortsch. Phys. 54 (2006) 5 [hep-th/0509137] [INSPIRE].

    Article  ADS  Google Scholar 

  • D.J. Myers, H. Sati and U. Schreiber, Topological Quantum Gates in Homotopy Type Theory, Commun. Math. Phys. 405 (2024) 172 [arXiv:2303.02382] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • C. Nayak et al., Non-Abelian anyons and topological quantum computation, Rev. Mod. Phys. 80 (2008) 1083 [arXiv:0707.1889] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • B. O’Neill, Semi-Riemannian Geometry With Applications to Relativity, Pure App. Math. 103 (1983) https://shop.elsevier.com/books/semi-riemannian-geometry-with-applications-to-relativity/oneill/978-0-12-526740-3, ISBN:9780125267403.

  • P. Pasti, D.P. Sorokin and M. Tonin, Covariant action for a D = 11 five-brane with the chiral field, Phys. Lett. B 398 (1997) 41 [hep-th/9701037] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • P. Pasti, D.P. Sorokin and M. Tonin, Branes in superAdS backgrounds and superconformal theories, in the proceedings of the 3rd International Workshop on Supersymmetries and Quantum Symmetries, Moscow, Russian Federation, July 27–31 (1999) [hep-th/9912076] [INSPIRE].

  • A. Petrunin and S.Z. Barrera, What is differential geometry: curves and surfaces, arXiv:2012.11814.

  • A. Rebhan, The Witten-Sakai-Sugimoto model: A brief review and some recent results, EPJ Web Conf. 95 (2015) 02005 [arXiv:1410.8858] [INSPIRE].

    Article  Google Scholar 

  • M. Rho and I. Zahed, The Multifaceted Skyrmion, World Scientific (2015) [https://doi.org/10.1142/9710].

  • D. Rist, C. Saemann and M. van der Worp, Towards an M5-brane model. Part III. Self-duality from additional trivial fields, JHEP 06 (2021) 036 [arXiv:2012.09253] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • A. Rogers, Supermanifolds: Theory and Applications, World Scientific (2007) [https://doi.org/10.1142/1878].

  • C. Rourke and B. Sanderson, Equivariant Configuration Spaces, J. Lond. Math. Soc. 62 (2000) 544 [math/9712216].

  • E.C. Rowell, Braids, Motions and Topological Quantum Computing, arXiv:2208.11762 [INSPIRE].

  • C. Sämann and L. Schmidt, Towards an M5-Brane Model I: A 6d Superconformal Field Theory, J. Math. Phys. 59 (2018) 043502 [arXiv:1712.06623] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • C. Sämann and L. Schmidt, Towards an M5-Brane Model II: Metric String Structures, Fortsch. Phys. 68 (2020) 2000051 [arXiv:1908.08086] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • H. Sati, Duality-symmetry and the form-fields in M-theory, JHEP 06 (2006) 062 [hep-th/0509046] [INSPIRE].

    Article  ADS  Google Scholar 

  • H. Sati, Geometric and topological structures related to M-branes, in Superstrings, Geometry, Topology, and C-algebras, Providence (2010), Proc. Symp. Pure Math. 81 (2010) 181 [arXiv:1001.5020] [INSPIRE].

  • H. Sati, Geometric and topological structures related to M-branes II: Twisted String and Stringc structures, J. Austral. Math. Soc. 90 (2011) 93 [arXiv:1007.5419] [INSPIRE].

    Article  Google Scholar 

  • H. Sati, Framed M-branes, corners, and topological invariants, J. Math. Phys. 59 (2018) 062304 [arXiv:1310.1060] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • H. Sati, Six-dimensional gauge theories and (twisted) generalized cohomology, arXiv:1908.08517 [INSPIRE].

  • H. Sati and U. Schreiber, Equivariant Cohomotopy implies orientifold tadpole cancellation, J. Geom. Phys. 156 (2020) 103775 [arXiv:1909.12277] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • H. Sati and U. Schreiber, Proper Orbifold Cohomology, arXiv:2008.01101 [INSPIRE].

  • H. Sati and U. Schreiber, The character map in equivariant twistorial Cohomotopy implies the Green-Schwarz mechanism with heterotic M5-branes, arXiv:2011.06533 [INSPIRE].

  • H. Sati and U. Schreiber, Twisted cohomotopy implies M5-brane anomaly cancellation, Lett. Math. Phys. 111 (2021) 120 [arXiv:2002.07737] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • H. Sati and U. Schreiber, Equivariant principal infinity-bundles, arXiv:2112.13654 [INSPIRE].

  • H. Sati and U. Schreiber, Differential Cohomotopy implies intersecting brane observables via configuration spaces and chord diagrams, Adv. Theor. Math. Phys. 26 (2022) 957 [arXiv:1912.10425] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • H. Sati and U. Schreiber, M/F-theory as Mf-theory, Rev. Math. Phys. 35 (2023) 2350028 [arXiv:2103.01877] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • H. Sati and U. Schreiber, Anyonic Defect Branes and Conformal Blocks in Twisted Equivariant Differential (TED) K-theory, arXiv:2203.11838 [https://doi.org/10.1142/S0129055X23500095] [INSPIRE].

  • H. Sati and U. Schreiber, Anyonic Topological Order in Twisted Equivariant Differential (TED) K-Theory, Rev. Math. Phys. 35 (2023) 2350001 [arXiv:2206.13563] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • H. Sati and U. Schreiber, Quantum Observables of Quantized Fluxes, arXiv:2312.13037 [INSPIRE].

  • H. Sati and U. Schreiber, Flux Quantization on Phase Space, arXiv:2312.12517 [https://doi.org/10.1007/s00023-024-01438-x] [INSPIRE].

  • H. Sati and U. Schreiber, Flux Quantization, arXiv:2402.18473 [https://doi.org/10.1016/B978-0-323-95703-8.00078-1] [INSPIRE].

  • H. Sati and U. Schreiber, Abelian Anyons on Flux-Quantized M5-Branes, arXiv:2408.11896 [INSPIRE].

  • H. Sati and A.A. Voronov, Mysterious Triality and M-Theory, arXiv:2212.13968 [INSPIRE].

  • G. Segal, Configuration-spaces and iterated loop-spaces, Invent. Math. 21 (1973) 213.

  • A. Sen, Self-dual forms: Action, Hamiltonian and Compactification, J. Phys. A 53 (2020) 084002 [arXiv:1903.12196] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • E. Sezgin and P. Sundell, Aspects of the M5-brane, in the proceedings of the ICTP Conference on Super Five Brane Physics in 5+1 Dimensions, Trieste, Italy, April 01–03 (1998) [hep-th/9902171] [INSPIRE].

  • D.P. Sorokin, Superbranes and superembeddings, Phys. Rept. 329 (2000) 1 [hep-th/9906142] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • S. Sternberg, Lectures on differential geometry, Prentice-Hall (1964), AMS (1983), https://bookstore.ams.org/chel-316.

  • S. Sugimoto, Skyrmion and String Theory, in The multifaceted skyrmion, G.E. Brown and M. Rho eds., World Scientific (2010), p. 347–366 [https://doi.org/10.1142/9789814280709_0015] [INSPIRE].

  • R.J. Szabo and A. Valentino, Ramond-Ramond fields, fractional branes and orbifold differential K-theory, Commun. Math. Phys. 294 (2010) 647 [arXiv:0710.2773] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • D. Tsimpis, 11D supergravity at O (l**3), JHEP 10 (2004) 046 [hep-th/0407271] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • V. Varadarajan, Supersymmetry for Mathematicians: An Introduction, American Mathematical Society (2004) [https://doi.org/10.1090/cln/011].

  • L. Williams, Configuration Spaces for the Working Undergraduate, arXiv:1911.11186.

  • E. Witten, Bound states of strings and p-branes, Nucl. Phys. B 460 (1996) 335 [hep-th/9510135] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • E. Witten, On flux quantization in M theory and the effective action, J. Geom. Phys. 22 (1997) 1 [hep-th/9609122] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • E. Witten, Five-brane effective action in M theory, J. Geom. Phys. 22 (1997) 103 [hep-th/9610234] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  • E. Witten, Anti-de Sitter space, thermal phase transition, and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  • E. Witten, Conformal Field Theory In Four And Six Dimensions, in the proceedings of the Symposium on Topology, Geometry and Quantum Field Theory (Segalfest), Oxford, U.K., June 24–29 (2002) Proc. London Math. Soc. (2004) 405, [arXiv:0712.0157] [INSPIRE].

  • E. Witten, Geometric Langlands From Six Dimensions, arXiv:0905.2720 [INSPIRE].

  • M. Xicoténcatl, On 2-equivariant loop spaces, in: Recent developments in algebraic topology, Contemp. Math. 407 (2006) 183, https://bookstore.ams.org/CONM/407.

  • A. Zandi, Minimal immersions of surfaces in quaternionic projective space, Tsukuba J. Math. 12 2 (1988) 423-440, [https://www.jstor.org/stable/43686661].

  • B. Zeng, X. Chen, D.-L. Zhou and X.-G. Wen, Quantum Information Meets Quantum Matter: From Quantum Entanglement to Topological Phases of Many-Body Systems, Springer (2019) [https://doi.org/10.1007/978-1-4939-9084-9] [INSPIRE].

  • J. Zaanen, Y.-W. Sun, Y. Liu and K. Schalm, Holographic Duality in Condensed Matter Physics, Cambridge Univ. Press (2015) [https://doi.org/10.1017/CBO9781139942492] [INSPIRE].