link.springer.com

The cellular eye lens and crystallins of cubomedusan jellyfish - Journal of Comparative Physiology A

  • ️Cutress, Charles E.
  • ️Fri Sep 01 1989
  • Ali MA (ed) (1982) Photoreception and vision in invertebrates. Nato ASI Ser A, vol 74. Plenum Press, New York, pp 1–858

    Google Scholar 

  • Anderson PAV, Mackie GO (1977) Electrically coupled, photosensitivie neurons control swimming in a jellyfish. Science 197:186–188

    Google Scholar 

  • Arkett SA, Spencer AN (1986) Neuronal mechanisms of a hydromedusan shadow reflex. I. Identified reflex components and sequence of events. J Comp Physiol A 159:201–213

    Google Scholar 

  • Arneson AC, Cutress CE (1976) Life history ofCarybdea alata Reymond, 1830 (Cubomedusae). In: Mackie GO (ed) Coelenterate ecology of behavior. Plenum Press, New York, pp 227–236

    Google Scholar 

  • Berger EW (1898) The histological structure of the eyes of cubomedusae. J Comp Neurol 8:223–230

    Google Scholar 

  • Berger EW (1900) Physiology and histology of the Cubomedusae, including Dr. F.S. Conant's notes on the physiology. Mem Biol Lab Johns Hopkins Univ 4:1–84

    Google Scholar 

  • Bloemendal H (1982) Lens proteins. CRC Critical Rev Biochem 12:1–38

    Google Scholar 

  • Burr AH (1984) Evolution of eyes and photoreceptor organelles in the lower phyla. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum, New York, pp 131–178

    Google Scholar 

  • Carper D, Nishimura C, Shinohara T, Dietzchold B, Wistow G, Craft C, Kador P, Kinoshita JH (1987) Aldose reductase andρ-crystallin belong to the same protein superfamily as aldehyde reductase. FEBS Lett 220:209–213

    Google Scholar 

  • Chapman DM (1985) X-ray microanalysis of selected coelenterate statoliths. J Mar Biol Ass UK 65:617–627

    Google Scholar 

  • Chiou S-H (1984) Physiochemical characterization of a crystallin from the squid lens and its comparison with vertebrate lens crystallins. J Biochem 95:75–82

    Google Scholar 

  • Chiou S-H (1986) Phylogenetic comparison of lens crystallins from the vertebrate and invertebrate-convergent or divergent evolution? FEBS Lett 201:69–73

    Google Scholar 

  • Chiou S-H, Chang T, Changa W-C, Kuo J, Lo T-B (1986) Characterization of lens crystallins and their mRNA from the carp lenses. Biochim Biophys Acta 871:324–328

    Google Scholar 

  • Clayton RM (1974) Comparative aspects of lens proteins. In: Davson H, Graham LT (eds) The eye, vol. 5. Academic Press, San Francisco, pp 399–494

    Google Scholar 

  • Clayton RM, Jeanny J-C, Bower DJ, Errington LH (1986) The presence of extralenticular crystallins and its relationship with transdifferentiation to lens. Curr Topics Develop Biol 20:137–151

    Google Scholar 

  • Conant FS (1897) Notes on the Cubomedusae. Johns Hopkins Univ Circ No 132:8–10

    Google Scholar 

  • Conant FS (1898) The Cubomedusae. Mem Biol Lab Johns Hopkins Univ 4(1):1–61

    Google Scholar 

  • Cronin TW (1986) Photoreception in marine invertebrates. Am Zool 26:403–415

    Google Scholar 

  • Cutress CE, Studebaker JP (1973) Development of the Cubomedusa,Carybdea marsupialis. Proc AIMLC 9:25

    Google Scholar 

  • de Jong WW (1981) Evolution of lens and crystallins. In: Bloemendal H (ed) Molecular and cellular biology of the eye lens. Wiley, New York, pp 221–278

    Google Scholar 

  • de Jong WW, Stapel SO, Zweers A (1981) A comparison of avian and reptilianδ-crystallin. Comp Biochem Physiol 69B:593–598

    Google Scholar 

  • Eakin RM (1972) Structure of invertebrate photoreceptors. In: Dartnall HJA (ed) Photochemistry of vision (Handbook of sensory physiology, vol. VII/1) Springer, Berlin Heidelberg New York, pp 625–684

    Google Scholar 

  • Eakin RM (1979) Evolutionary significance of photoreceptors: in retrospect. Am Zool 19:647–653

    Google Scholar 

  • Eakin RM, Westfall JA (1962) Fine structure of photoreceptors in the hydromedusan,Polyorchis penicillatus. Proc Natl Acad Sci USA 48:826–833

    Google Scholar 

  • Ebert RF (1986) Amino acid analysis by HPLC: optimized conditions for chromatography of phenylthiocarbamyl derivatives. Anal Biochem 154:431–435

    Google Scholar 

  • Field KG, Olsen GJ, Lane DJ, Giovannoni SJ, Ghiselin MT, Raff EC, Pace NR, Raff RA (1988) Molecular phylogeny of the animal kingdom. Science 239:748–753

    Google Scholar 

  • Gause GG Jr, Tomarev SI, Zonovieva RD, Arutyunyan KG, Dolgilevich SM (1986) Crystallin gene sequences of the frogRana temporaria. In: Duncan G (ed) The lens: transparency and cataract. Proceedings of the Eurage/BBS Symposium, pp 171–179

  • Huang Q-L, Russell P, Stone SH, Zigler JS, Jr (1987) Zetacrystallin, a novel lens protein from the guinea pig. Curr Eye Res 6:725–732

    Google Scholar 

  • Hyman LH (1940) The invertebrates: Protozoa through ctenophora, vol 1. McGraw Hill, New York, pp 1–726

    Google Scholar 

  • Ingolia TD, Craig EA (1982) Four smallDrosophila heat shock proteins are related to each other and to mammalianα-crystallin. Proc Natl Acad Sci USA 79:2360–2364

    Google Scholar 

  • Kent S, Clark-Lewis I (1985) Modern methods for the chemical synthesis of biologically active peptides. In: Alitalo K, Partanen P, Vaheri A (eds) Synthetic peptides in biology and medicine. Elsevier, Amsterdam, pp 29–57

    Google Scholar 

  • Kuwabara T (1968) Microtubules in the lens. Arch Ophthalmol 79:189–195

    Google Scholar 

  • Kuwabara T (1975) The maturation of the lens cell: a morphologic study. Exp Eye Res 20:427–443

    Google Scholar 

  • Laska VG, Hundgen M (1982) Morphologie und Ultrastruktur der Lichtsinnesorgane vonTripedalia cystophora Conant (Cnidaria, Cubozoa). Zool Jb Anat 108:107–123

    Google Scholar 

  • Manski W, Halbert SP (1965) Immunochemical investigation on the phylogeny of lens proteins. In: Peeters H (ed) Protides of the biological fluids. Proceedings of the Twelfth Colloquium, Bruges, 1964. Elsevier, Amsterdam, pp 117–134

    Google Scholar 

  • McDermott MJ, Gawinowicz-Kolks MA, Chiesa R, Spector A (1988) The disulfide content of calfγ-crystallin. Arch Biochem Biphys 262:609–619

    Google Scholar 

  • Milstone LM, Piatigorsky J (1975) Rates of protein synthesis in explanted embryonic chick lens epithelia: differential stimulation ofδ-crystallin synthesis. Dev Biol 43:91–100

    Google Scholar 

  • Nene V, Dunne DW, Johnson KS, Taylor DW, Cordingley JS (1986) Sequence and expression of a major egg antigen fromSchistosoma mansoni. Mol Biochem Parasitol 21:179–189

    Google Scholar 

  • Oakley BR, Kirsch RD, Morris NR (1980) A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal Biochem 105:361–363

    Google Scholar 

  • Ostrer H, Beebe DC, Piatigorsky J (1981)β-Crystallin mRNAs: Differential distribution in the developing chicken lens. Dev Biol 86:403–408

    Google Scholar 

  • Packard A (1972) Cephalopods and fish: the limits of convergence. Biol Rev 47:241–307

    Google Scholar 

  • Pearse JS, Pearse VB (1978) Vision in cubomedusan jellyfishes. Science 199:458

    Google Scholar 

  • Peterson CA, Piatigorsky J (1986) Preferential conservation of the globular domains of theβA3/A1-crystallin polypeptide of the chicken eye lens. Gene 45:139–147

    Google Scholar 

  • Piatigorsky J (1984) Delta crystallins and their nucleic acids. Mol Cell Biochem 59:33–56

    Google Scholar 

  • Piatigorsky J, Webster H de F, Craig SP (1972) Protein systhesis and ultrastructure during the formation of embryonic chick lens fibers in vivo and in vitro. Dev Biol 27:176–189

    Google Scholar 

  • Piatigorsky J, O'Brien WE, Norman BL, Kalumuck K, Wistow GJ, Borras T, Nickerson JM, Wawrousek EF (1988) Gene sharing byδ-crystallin and argininosuccinate lyase. Proc Natl Acad Sci USA 85:3479–3483

    Google Scholar 

  • Robson EA (1985) Speculations on coelenterates. In: Morris SC, George JD, Gibson R, Platt HM (eds) The systematics association, Special Vol 28. The origins and relationships of lower invertebrates. Clarendon Press, Oxford, pp 60–77

    Google Scholar 

  • Salvini-Plawen L von, Mayr E (1977) On the evolution of photoreceptors and eyes. Evol Biol 10:207–263

    Google Scholar 

  • Satterlie RA (1979) Central control of swimming in the cubomedusan jellyfishCarybdea rastonii. J Comp Physiol 133:357–367

    Google Scholar 

  • Siezen RJ, Shaw DC (1982) Physicochemical characterization of lens proteins of the squidNototodarus gouldi and comparison with vertebrate crystallins. Biochim Biophys Acta 704:304–320

    Google Scholar 

  • Singla CL (1974) Ocelli of hydromedusae. Cell Tissue Res 149:413–429

    Google Scholar 

  • Singla CL, Weber C (1982) Fine structure studies of the ocelli ofPolyorchis penicillatus (Hydrozoa, Anthomedusae) and their connection with the nerve ring. Zoomorphology 99:117–129

    Google Scholar 

  • Singla CL, Weber C (1982) Fine structure of the ocellus ofSarsia tubulosa (Hydrozoa, Anthomedusae). Zoomorphology 100:11–22

    Google Scholar 

  • Sivak JG (1976) Optics of the eye of the ‘four-eyed fish’ (Anableps anableps). Vision Res 16:531–534

    Google Scholar 

  • Spencer AN, Arkett SA (1984) Radial symmetry and the organization of central neurones in a hydrozoan jellyfish. J Exp Biol 110:69–90

    Google Scholar 

  • Stapel SO, de Jong WW (1983) Lamprey 48-kDa lens protein represents a novel class of crystallins. FEBS Lett 162:305–309

    Google Scholar 

  • Stapel SO, Zweers A, Dodemont HJ, Kan JH, de Jong WW (1985)ε-Crystallin, a novel avian and reptilian eye lens protein. Eur J Biochem 147:129–136

    Google Scholar 

  • Takemoto L, Hansen J, Horwitz J (1985) Antisera to synthetic peptides of lens MIP26K (major intrinsic polypeptide): characterization and use as site-specific probes of membrane changes in the aging human lens. Exp Eye Res 41:415–422

    Google Scholar 

  • Tomarev SI, Zinovieva RD, Dolgilevich SM, Luchin SV, Krayev AS, Skryabin KG, Gause GG Jr (1984) A novel type of crystallin in the frog eye lens. 35-kDa polypeptide is not homologous to any of the major classes of lens crystallins. FEBS Lett 171:297–302

    Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Google Scholar 

  • Watanabe K, Fujii Y, Nakayama K, Ohkubo H, Kuramitsu S, Kagamiyama H, Nakanishi S, Hayaishi O (1988) Structural similarity of bovine lung prostaglandin F synthase to lensε-crystallin of the European common frog. Proc Natl Acad Sci USA 85:11–15

    Google Scholar 

  • Weber C (1981) Lens of the hydromedusanCladonema studied by SDS gel electrophoresis and immunofluorescent technique. J Exp Zool 217:15–21

    Google Scholar 

  • Weber C (1981) Structure, histochemistry, ontogenetic development, and regeneration of the ocellus ofCladonema radiatum Dujardin (Cnidaria, Hydrozoa, Anthomedusae). J Morphol 167:313–331

    Google Scholar 

  • Weber C (1982a) Electrical activities of a type of electroretinogram recorded from the ocellus of a jellyfish,Polyorchis penicillatus (Hydromedusae). J Exp Zool 223:231–243

    Google Scholar 

  • Weber C (1982b) Electrical activity in response to light of the ocellus of the hydromedusan,Sarsia tubulosa. Biol Bull 162:413–422

    Google Scholar 

  • Werner B, Chapman DM, Cutress CE (1976) Muscular and nervous systems of the cubopolyp (Cnidaria). Experientia 32:1047–1048

    Google Scholar 

  • Werner B, Cutress CE, Studebaker JP (1971) Life cycle ofTripedalia cystophora Conant (Cubomedusae). Nature 232:582–583

    Google Scholar 

  • Willekens B, Vrensen G, Jacob T, Duncan G (1984) The ultrastructure of the lens of the cephalopodSepiola: a scanning electron microscopic study. Tissue Cell 16:941–950

    Google Scholar 

  • Williams LA, Ding L, Horwitz J, Piatigorsky J (1985)τ-Crystallin from the turtle lens: purification and partial characterization. Exp Eye Res 40:741–749

    Google Scholar 

  • Williams LA, Piatigorsky J, Horwitz J (1982) Structural features ofδ-crystallin of turtle lens. Biochim Biophys Acta 708:49–56

    Google Scholar 

  • Wistow GJ, Mulders JWM, de Jong WW (1987) The enzyme lactate dehydrogenase as a structural protein in avian and crocodilian lenses. Nature 326:622–624

    Google Scholar 

  • Wistow G, Piatigorsky J (1987) Recruitment of enzymes and lens structural proteins. Science 236:1554–1556

    Google Scholar 

  • Wistow GJ, Piatigorsky J (1988) Lens crystallins: The evolution and expression of proteins for a highly specialized tissue. Annu Rev Biochem 57:479–504

    Google Scholar 

  • Wistow G, Slingsby C, Blundell T, Driessen H, de Jong W, Bloemendal H (1981) Eye-lens proteins: the three-dimensional structure of β-crystallin predicted from monomericγ-crystallin. FEBS Lett 133:9–16

    Google Scholar 

  • Wistow G, Summers L, Blundell T (1985)Myxococcus xanthus spore coat protein S may have a similar structure to vertebrate lensβγ-crystallins. Nature 315:771–773

    Google Scholar 

  • Wistow G, Turnell B, Summers L, Slingsby C, Moss D, Miller L, Lindley P, Blundell T (1983) X-ray analysis of the eye lens proteinγ-II crystallin at 1.9 Å resolution. J Mol Biol 170:175–202

    Google Scholar 

  • Yamasu T, Yoshida M (1976) Fine structure of complex ocelli of a cubomedusan,Tamoya bursaria Haeckel. Cell Tissue Res 170:325–339

    Google Scholar 

  • Yeh L-SL, Elzanowski A, Hunt LT, Barker WC (1988) Homology of delta crystallin and argininosuccinate lyase. Comp Biochem Physiol 89B: 433–437

    Google Scholar 

  • Zigler JS Jr, Sidbury JB Jr (1976) A comparative study of theβ-crystallins of four sub-mammalian species. Comp Biochem Physiol 55B: 19–24

    Google Scholar