link.springer.com

Hyperbolic manifolds and special values of Dedekind zeta-functions - Inventiones mathematicae

  • ️Zagier, Don
  • ️Sun Jun 01 1986

Access this article

Log in via an institution

Subscribe and save

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Borel, A.: Commensurability classes and volumes of hyperbolic 3-manifolds. Ann. Sc. Norm. Super. Pisa8, 1–33 (1981) (=Oeuvres3, 617–649)

    Google Scholar 

  2. Hörsch, K.-H.: Ein Verfahren zur Berechnung vonL-Reihen. Diplomarbeit, Bonn 1982

  3. Klingen, H.: Über die Werte der Dedekindschen Zetafunktionen. Math. Ann.145, 265–272 (1962)

    Google Scholar 

  4. Lewin, L.: Polylogarithms and Associated Functions. New York-Oxford: North Holland 1981

    Google Scholar 

  5. Siegel, C.L.: Berechnung von Zetafunktionen an ganzzahligen Stellen. Nachr. Akad. Wiss. Gött.10, 87–102 (1969) (=Ges. Abh.4, 82–97)

    Google Scholar 

  6. Thurston, W.P.: The Geometry and Topology of Three-Manifolds (Chapter 7, “Computation of Volume”, by J. Milnor). Mimeographed lecture notes, Princeton University 1979

  7. Thurston, W.P.: Hyperbolic structures on 3-manifolds, I. In: Deformation of acylindric manifolds. Ann. Math. (to appear)

  8. Vignéras, M.-F.: Arithmétique des Algèbres de Quaternions. Lect. Notes No. 800. Berlin-Heidelberg-New York: Springer 1980

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Max-Planck-Institut für Mathematik, Gottfried-Claren-Straße 26, D-5300, Bonn 3, Federal Republic of Germany

    Don Zagier

  2. Department of Mathematics, University of Maryland, 20742, College Park, MD, USA

    Don Zagier

Authors

  1. Don Zagier

    You can also search for this author in PubMed Google Scholar

About this article

Cite this article

Zagier, D. Hyperbolic manifolds and special values of Dedekind zeta-functions. Invent Math 83, 285–301 (1986). https://doi.org/10.1007/BF01388964

Download citation

  • Issue Date: June 1986

  • DOI: https://doi.org/10.1007/BF01388964

Keywords