link.springer.com

Heegner points and derivatives ofL-series. II - Mathematische Annalen

  • ️Zagier, D.
  • ️Sun Mar 01 1987

Access this article

Log in via an institution

Subscribe and save

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Abramowitz, N., Stegun, I.: Handbook of mathematical functions. New York: Dover 1965

    Google Scholar 

  2. Cohen, H.: A lifting of modular forms in one variable to Hilbert modular forms in two variables. In: Modular functions of one variable. VI. Serre, J.-P., Zagier, D. (eds.), 175–196. Lect. Notes. Math. 627. Berlin, Heidelberg, New York: Springer 1977

    Google Scholar 

  3. Deuring, M.: Die Typen der Multiplikatorenringe elliptischer Funktionenkörper: Abh. Math. Sem. Univ. Hamb.14, 197–272 (1941)

    Google Scholar 

  4. Eichler, M., Zagier, D.: The theory of Jacobi forms. Prog. Math. 55. Basel, Boston, Stuttgart: Birkhäuser 1985

    Google Scholar 

  5. Gross, B.: Heegner points onX o (N). In: Modular forms. Rankin, R.A. (ed.), 87–106. Chichester: Ellis Horwood 1984

    Google Scholar 

  6. Gross, B.: Local heights on curves. In: Arithmetic geometry. Cornell, G., Silverman, J. (eds.), 327–339. Berlin, Heidelberg, New York: Springer 1986

    Google Scholar 

  7. Gross, B.: On canonical and quasi-canonical liftings. Invent. Math.84, 321–326 (1986)

    Google Scholar 

  8. Gross, B., Zagier, D.: On singular moduli. J. Reine Angew. Math.355, 191–220 (1985)

    Google Scholar 

  9. Gross, B., Zagier, D.: Heegner points and derivatives ofL-series. Invent. Math.84, 225–320 (1986)

    Google Scholar 

  10. Hirzebruch, F., Zagier, D.: Intersection numbers of curves of Hilbert modular surfaces and modular forms of Nebentypus. Invent. Math.36, 57–113 (1976)

    Google Scholar 

  11. Katz, N., Mazur, B.: Arithmetic moduli of elliptic curves. Ann. Math. Stud.108, Princeton. Princeton University Press 1985

    Google Scholar 

  12. Kohnen, W.: Fourier coefficients of modular forms of half-integral weight. Math. Ann.271, 237–268 (1985)

    Google Scholar 

  13. Kohnen, W., Zagier, D.: Modular forms with rational periods. In: Modular forms. Rankin, R.A. (ed.), 197–249. Chichester: Ellis Horwood 1984

    Google Scholar 

  14. Shintani T.: On construction of holomorphic cusp forms of half-integral weight. J. Math. Soc. Japan33, 649–672 (1981)

    Google Scholar 

  15. Skoruppa, N., Zagier, D.: Jacobi forms and a certain space of modular forms. Preprint

  16. Sturm, J.: Projections ofC automorphic forms. Bull. Am. Math. Soc.2, 435–439 (1980)

    Google Scholar 

  17. Vignéras, M.-F.: Arithmétique des algèbres de quaternions. Lect. Notes 800. Berlin, Heidelberg, New York: Springer 1980

    Google Scholar 

  18. Waldspurger, J.-L.: Sur les coefficients de Fourier des formes modulaires de poids demi-entier. J. Math. Pures Appl60, 375–484 (1981)

    Google Scholar 

  19. Waldspurger, J.-L.: Sur les valeurs des certaines fonctionsL automorphes en leur centre de symétrie. Compos. Math.54, 173–242 (1985)

    Google Scholar 

  20. Zagier, D.: Modular forms associated to real quadratic fields. Invent. Math.30, 1–46 (1975)

    Google Scholar 

  21. Zagier, D.: Modular functions whose Fourier coefficients involve zeta-functions of quadratic fields. In: Modular functions of one variable. VI. Serre, J.P., Zagier, D. (eds.), 105–169. Lect. Notes 627. Berlin, Heidelberg, New York: Springer 1977

    Google Scholar 

  22. Zagier, D.: Eisenstein series and the Riemann zeta function. In: Automorphic forms. representation theory and arithmetic., 275–301 Berlin, Heidelberg, New York: Springer 1981

    Google Scholar 

  23. Zagier, D.: Modular points modular curves, modular surfaces, and modular forms. In: Arbeitstagung Bonn 1984. Hirzebruch, F., Schwermer, J., Suter., S. (eds.), 225–248 Lect. Notes Math. 1111. Berlin, Heidelberg, New York: Springer 1985

    Google Scholar 

Download references