link.springer.com

The unusual mineral vaterite in shells of the freshwater bivalve Corbicula fluminea from the UK - The Science of Nature

  • ️Aldridge, David C.
  • ️Tue Jun 22 2010
  • Addadi L, Weiner S (1985) Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. Proc Nat Acad Sci USA 82:4110–4114

    Article  CAS  PubMed  Google Scholar 

  • Albright JN (1971) Vaterite stability. Am Mineral 56:620–624

    CAS  Google Scholar 

  • Alzieu C, Heral T, Thibaud Y, Dardignac MJ, Feuillet M (1982) Influence des peintures antisalissures sur la calcification de la coquille de l'huitre Crassostrea gigas. Rev Trav Inst Pêches marit 45:101–116

    Google Scholar 

  • Behrens G, Kuhn LT, Ubic R, Heuer AH (1995) Raman spectra of vateritic calcium carbonate. Spectros Lett 28:983–995

    Article  CAS  Google Scholar 

  • Birkett JW, Noreng JMK, Lester JN (2002) Spatial distribution of mercury in the sediments and riparian environment of the River Yare, Norfolk, UK. Environ Pollut 116:65–74

    Article  CAS  PubMed  Google Scholar 

  • Bubb JM, Rudd T, Lester JN (1991a) Distribution of heavy metals in the River Yare and its associated Broads I. Mercury and methylmercury. Sci Total Environ 102:147–168

    Article  CAS  Google Scholar 

  • Bubb JM, Rudd T, Lester JN (1991b) Distribution of heavy metals in the River Yare and its associated Broads II. Copper and cadmium. Sci Total Environ 102:169–188

    Article  CAS  Google Scholar 

  • Bubb JM, Rudd T, Lester JN (1991c) Distribution of heavy metals in the River Yare and its associated Broads III. Lead and zinc. Sci Total Environ 102:189–208

    Article  CAS  Google Scholar 

  • Carter JG (1980) Environmental and biological controls of bivalve shell mineralogy and microstructure. In: Rhoads DC, Lutz RA (eds) Skeletal growth of aquatic organisms: biological records of environmental change. Plenum, New York, pp 69–113

    Google Scholar 

  • Coelho MR, Langston WJ, Bebianno MJ (2006) Effect of TBT on Ruditapes decussatus juveniles. Chemosphere 63:1499–1505

    Article  CAS  PubMed  Google Scholar 

  • Counts CL, Prezant RS (1982) Shell microstructure of Corbicula fluminea (Bivalvia: Corbiculidae). Nautilus 96:25–30

    Google Scholar 

  • Dame RF (1972) The ecological energies of growth, respiration and assimilation in the intertidal American oyster Crassostrea virginica. Mar Biol 17:243–250

    Article  Google Scholar 

  • Dowson PH, Pershke D, Bubb JM, Lester JN (1992) Spatial distribution of organotins in sediments of lowland river catchments. Environ Pollut 76:259–266

    Article  CAS  PubMed  Google Scholar 

  • Elliott P, zu Ermgassen PSE (2008) The Asian clam (Corbicula fluminea) in the River Thames, London, England. Aquat Inv 3:54–60

    Article  Google Scholar 

  • Falini G, Albeck S, Weiner S, Addadi L (1996) Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 271:67–69

    Article  Google Scholar 

  • Falini G, Fermani S, Vanzo S, Miletic M, Zaffino G (2005) Influence on the formation of aragonite or vaterite by otolith macromolecules. Eur J Inorg Chem 2005:162–167

    Article  Google Scholar 

  • Falini G, Fermani S, Tosi G, Dinelli E (2009) Calcium carbonate morphology and structure in the presence of seawater ions and humic acids. Cryst Growth Des 9:2065–2072

    Article  CAS  Google Scholar 

  • Gauldie RW (1993) Polymorphic crystalline structure of fish otoliths. J Morphol 218:1–28

    Article  Google Scholar 

  • Glover C, Kidwell SM (1993) Influence of organic matrix on the post-mortem destruction of molluscan shells. J Geol 101:729–747

    Article  Google Scholar 

  • Grasby SE (2003) Naturally precipitating vaterite (μ-CaCO3) spheres: unusual carbonates formed in an extreme environment. Geochim Cosmochim Acta 67:1659–1666

    Article  CAS  Google Scholar 

  • Hall A, Taylor JD (1971) The occurrence of vaterite in gastropod egg-shells. Mineral Mag 38:521–522

    Article  CAS  Google Scholar 

  • Hasse B, Ehrenberg H, Marxen JC, Becker W, Epple M (2000) Calcium carbonate modifications in the mineralized shell of the freshwater snail Biomphalaria glabrata. Chem Eur J 6:3679–3685

    Article  CAS  Google Scholar 

  • Hayashi S, Ohkawa K, Suwa Y, Sugawara T, Asami T, Yamamoto H (2008) Fibrous and helical calcite crystals induced by synthetic polypeptides containing O-phospho-L-serine and O-phospho-L-threonine. Macromol Biosci 8:46–59

    Article  CAS  PubMed  Google Scholar 

  • Higuera-Ruiz R, Elorza J (2009) Biometric, microstructural, and high-resolution trace element studies in Crassostrea gigas of Cantabria (Bay of Biscay, Spain): anthropogenic and seasonal influences. Estuar Coast Shelf S 82:201–213

    Article  CAS  Google Scholar 

  • Hoare DJ (2007) Ecological change in shallow lakes through antifoulant biocide contamination. Dissertation, University College London

  • Howlett D, Baker R (1999) Corbicula fluminea (Müller): new to UK. J Conchol 36:83

    Google Scholar 

  • Jacob DE, Soldati AL, Wirth R, Huth J, Wehrmeister U, Hofmeister W (2008) Nanostructure, composition and mechanisms of bivalve shell growth. Geochim Cosmochim Acta 72:5401–5415

    Article  CAS  Google Scholar 

  • Kamhi SR (1963) On the structure of vaterite, CaCO3. Acta Crystallogr 16:770–772

    Article  CAS  Google Scholar 

  • Kessel E (1933) Über die Schale von Viviparus viviparus L. und Viviparus fasciatus Müll. Ein Beitrag zum Strukturproblem der Gastropodenschale. Z Morphol Oekol Tiere 27:129–198

    Article  Google Scholar 

  • Kralj D, Brečević L, Nielsen AE (1990) Vaterite growth and dissolution in aqueous solution I. Kinetics of crystal growth. J Cryst Growth 104:793–800

    Article  CAS  Google Scholar 

  • Kralj D, Brečević L, Kontrec J (1997) Vaterite growth and dissolution in aqueous solution III. Kinetics of transformation. J Cryst Growth 177:248–257

    Article  CAS  Google Scholar 

  • Lakshminarayanan R, Chi-Jin EO, Loh XJ, Kini RM, Valiyaveettil S (2005) Purification and characterization of a vaterite-inducing peptide, pelovaterin, from the eggshells of Pelodiscus sinensis (Chinese soft-shelled turtle). Biomacromolecules 6:1429–1437

    Article  CAS  PubMed  Google Scholar 

  • Leonard GH, Bertness MD, Yund PO (1999) Crab predation, waterborne cues, and inducible defenses in the blue mussel, Mytilus edulis. Ecology 80:1–14

    Google Scholar 

  • Lippmann F (1973) Sedimentary carbonate minerals. Springer, Berlin

    Google Scholar 

  • Lomovasky BJ, Gutiérrez JL, Iribarne OO (2005) Identifying repaired shell damage and abnormal calcification in the stout razor clam Tagelus plebeius as a tool to investigate its ecological interactions. J Sea Res 54:163–175

    Article  Google Scholar 

  • Lowenstam HA (1981) Minerals formed by organisms. Science 211:1126–1131

    Article  CAS  PubMed  Google Scholar 

  • Lowenstam HA, Abbott DP (1975) Vaterite: a mineralization product of the hard tissues of a marine organism (Ascidiacea). Science 188:363–365

    Article  CAS  PubMed  Google Scholar 

  • Lucas D, Andrews JE (1996) A re-examination of reported lacustrine vaterite formation in Holkham Lake, Norfolk, UK. J Sediment Res 66:474–476

    CAS  Google Scholar 

  • Ma HY, Lee IS (2006) Characterization of vaterite in low quality freshwater-cultured pearls. Mater Sci Engin C 26:721–723

    Article  CAS  Google Scholar 

  • Ma H, Su A, Zhang B, Li RK, Zhou L, Wang B (2009) Vaterite or aragonite observed in the prismatic layer of freshwater-cultured pearls from South China. Progr Nat Sci 19:817–820

    Article  Google Scholar 

  • Machado J, Coimbra J, Sã C (1989) Shell thickening in Anodonta cygnea by TBTO treatments. Comp Biochem Physiol C Comp Pharmacol 92:77–80

    Article  Google Scholar 

  • Mackie GL (1978) Shell structure in freshwater Sphaeriaceae (Bivalvia: Heterodonta). Can J Zool 56:1–6

    Article  Google Scholar 

  • Mayer FK (1931) Röntgenographische Untersuchungen an Gastropodenschalen. Jena Zeitschr Naturwiss 65:487–513

    CAS  Google Scholar 

  • McMahon RF (1983) Ecology of an invasive pest bivalve, Corbicula. In: Russell-Hunter WD (ed) The Mollusca. Academic, London, pp 505–561

    Google Scholar 

  • Meenakshi VR, Blackwelder PL, Watabe N (1974) Studies on the formation of calcified egg-capsules of ampullarid snails. Calcif Tissue Int 16:283–291

    Article  CAS  Google Scholar 

  • Melancon S, Fryer BJ, Ludsin SA, Gagnon JE, Yang Z (2005) Effects of crystal structure on the uptake of metals by lake trout (Salvelinus namaycush) otoliths. Can J Fish Aquat Sci 62:2609–2619

    Article  CAS  Google Scholar 

  • Morat F, Betoulle S, Robert M, Thailly AF, Biagianti-Risbourg S, Lecomte-Finiger R (2008) What can otolith examination tell us about the level of perturbations of Salmonid fish from the Kerguelen Islands? Ecol Freshwat Fish 17:617–627

    Article  Google Scholar 

  • Müller SJ (2003) Ecology and impacts of the non-indigenous Asian clam Corbicula fluminea (Müller, 1774) in Britain. Dissertation, University of Cambridge

  • Page DS, Dassanayake TM, Gilfillan ES (1996) Relationship between tissue concentrations of tributyltin and shell morphology in field populations of Mytilus edulis. Bull Environ Contam Toxicol 56:500–504

    Article  CAS  PubMed  Google Scholar 

  • Palchik NA, Moroz TN (2005) Polymorph modifications of calcium carbonate in gallstones. J Cryst Growth 283:450–456

    Article  CAS  Google Scholar 

  • Perić J, Vučak M, Krstulović R, Brečević L, Kralj D (1996) Phase transformation of calcium carbonate polymorphs. Thermochim Acta 277:175–186

    Article  Google Scholar 

  • Plummer LN, Busenberg E (1982) The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90°C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O. Geochim Cosmochim Acta 46:1011–1040

    Article  CAS  Google Scholar 

  • Pokroy B, Zolotoyabko E, Adir N (2006) Purification and functional analysis of a 40 kD protein extracted from the Strombus decorus persicus mollusk shells. Biomacromolecules 7:550–556

    Article  CAS  PubMed  Google Scholar 

  • Preece RC, Meijer T (2000) A review of the occurrence of Corbicula in the Pleistocene of north-west Europe. Geol Mijnbouw—NJG 79:241–255

    Google Scholar 

  • Prezant RS, Tan-Tiu A (1985) Comparative shell microstructure of North American Corbicula (Bivalvia: Sphaeriacea). Veliger 27:312–319

    Google Scholar 

  • Prince JS, Lynn MJ, Blackwelder PL (2006) White vesicles in the skin of Aplysia californica Cooper: a proposed excretory function. J Mollus Stud 72:405–412

    Article  Google Scholar 

  • Qiao L, Feng QL, Li Z (2007) Special vaterite found in freshwater lacklustre pearls. Cryst Growth Des 7:275–279

    Article  CAS  Google Scholar 

  • Qiao L, Feng QL, Liu Y (2008) A novel bio-vaterite in freshwater pearls with high thermal stability and low dissolubility. Mater Lett 62:1793–1796

    Article  CAS  Google Scholar 

  • Rodhouse PG (1977) An improved method for measuring volume of bivalves. Aquaculture 11:279–280

    Article  Google Scholar 

  • Rodriguez-Navarro C, Jimenez-Lopez C, Rodriguez-Navarro A, Gonzalez-Muñoz MT, Rodriguez-Gallego M (2007) Bacterially mediated mineralization of vaterite. Geochim Cosmochim Acta 71:1197–1213

    Article  CAS  Google Scholar 

  • Rowlands DLG, Webster RK (1971) Precipitation of vaterite in lake water. Nat Phys Sc 229:158

    CAS  Google Scholar 

  • Saleuddin ASM, Wilbur KM (1969) Shell regeneration in Helix pomatia. Can J Zool 47:51–53

    Article  CAS  Google Scholar 

  • Simon A, Poulicek M, Velimirov B, MacKenzie FT (1994) Comparison of anaerobic and aerobic biodegradation of mineralized skeletal structures in marine and estuarine conditions. Biogeochemistry 25:167–195

    Article  Google Scholar 

  • Sokolowski A, Fichet D, Garcia-Meunier P, Radenac G, Wolowicz MJ, Blanchard G (2002) The relationship between metal concentrations and phenotypes in the Baltic clam Macoma balthica (L.) from the Gulf of Gdansk, Southern Baltic. Chemosphere 47:475–484

    Article  CAS  PubMed  Google Scholar 

  • Soldati AL, Jacob DE, Wehrmeister U, Hofmeister W (2008) Structural characterization and chemical composition of aragonite and vaterite in freshwater cultured pearls. Mineral Mag 72:579–592

    Article  CAS  Google Scholar 

  • Sparks BW, West RG (1970) Late Pleistocene deposits at Wretton, Norfolk. I. Ipswichian interglacial deposits. Phil Trans Roy Soc Lond B 258:1–30

    Article  Google Scholar 

  • Strayer DL (2008) A new widespread morphological deformity in freshwater mussels from New York. Northeast Nat 15:149–151

    Article  Google Scholar 

  • Sutor DJ, Wooley SE (1968) Gallstone of unusual composition: calcite, aragonite and vaterite. Science 159:1113–1114

    Article  CAS  PubMed  Google Scholar 

  • Taylor JD, Kennedy WJ, Hall A (1973) The shell structure and mineralogy of the bivalvia: II. Lucinacea–Clavagellacea conclusions. Bull Br Mus Nat Hist Zool 22:253–294

    Google Scholar 

  • Trussell GC, Smith LD (2000) Induced defenses in response to an invading crab predator: an explanation of historical and geographic phenotypic change. Proc Nat Acad Sci USA 97:2123–2127

    Article  CAS  PubMed  Google Scholar 

  • Vecht A, Ireland TG (2000) The role of vaterite and aragonite in the formation of pseudo-biogenic carbonate structures: implications for Martian exobiology. Geochim Cosmochim Acta 64:2719–2725

    Article  CAS  PubMed  Google Scholar 

  • Waite ME, Evans KE, Thain JE, Waldock MJ (1989) Organotin concentrations in the Rivers Bure and Yare, Norfolk Broads, England. Appl Organomet Chem 3:383–391

    Article  CAS  Google Scholar 

  • Wang J, Becker U (2009) Structure and carbonate orientation of vaterite (CaCO3). Am Mineral 94:380–386

    Article  CAS  Google Scholar 

  • Watabe N (1983) Shell repair. In: Wilbur KM, Saleuddin ASM (eds) The Mollusca. Academic, London, pp 289–316

    Google Scholar 

  • Watabe N, Meenakshi VR, Blackwelder PL, Kurtz EM, Dunkelberger DG (1976) Calcareous spherules in the gastropod Pomacea paludosa. In: Watabe N, Wilbur KM (eds) Mechanisms of mineralization in the invertebrates and plants. University South Carolina Press, Columbia, pp 283–308

    Google Scholar 

  • Wehrmeister U, Jacob DE, Soldati AL, Häger T, Hofmeister W (2007) Vaterite in freshwater cultured pearls from China and Japan. J Gemmol 31:269–276

    Google Scholar 

  • Wilbur KM, Saleuddin ASM (1983) Shell formation. In: Wilbur KM, Saleuddin ASM (eds) The Mollusca. Academic, London, pp 236–287

    Google Scholar 

  • Wilbur KM, Watabe N (1963) Experimental studies on calcification in molluscs and the alga Coccolithus huxleyi. Ann NY Acad Sci 109:82–112

    Article  CAS  PubMed  Google Scholar 

  • Willing MJ (2007) Sphaerium solidum and Corbicula fluminea: two rare bivalve molluscs in the River Great Ouse system in Cambridgeshire. Nat Cambs 49:39–49

    Google Scholar 

  • Wilmot NV, Barber DJ, Taylor JD, Graham AL (1992) Electron microscopy of molluscan crossed-lamellar microstructure. Phil Trans Roy Soc Lond B 337:21–35

    Article  Google Scholar 

  • Zieritz A, Aldridge DC (2009) Identification of ecophenotypic trends within three European freshwater mussel species (Bivalvia: Unionoida) using traditional and modern morphometric techniques. Biol J Linn Soc 98:814–825

    Article  Google Scholar