link.springer.com

Pollen dispersal in sugar beet production fields - Theoretical and Applied Genetics

  • ️Muchembled, Claude
  • ️Sat Jan 31 2009
  • Abramowitz M, Stegun IA (1964) Handbook of mathematical functions with formulas, graphs, and mathematical tables. US Government Printed Office, Washington DC

    Google Scholar 

  • Alibert B, Sellier H, Souvré A (2005) A combined method to study gene flow from cultivated sugar beet to ruderal beets in the glasshouse and open field. Eur J Agron 23:195–208

    Article  Google Scholar 

  • Andersen NS, Siegismund HR, Meyer V, Jorgensen RB (2005) Low level of gene flow from cultivated beets (Beta vulgaris L. ssp. vulgaris) into Danish populations of sea beet (Beta vulgaris L. ssp maritima (L.) Arcangeli. Mol Ecol 14:1391–1405

    Article  PubMed  CAS  Google Scholar 

  • Archimowitsch A (1949) Control of pollination in sugar-beet. Bot Rev 15:613–628

    Article  Google Scholar 

  • Austerlitz F, Dick CW, Dutech C, Klein EK, Oddou-Muratorio S, Smouse PE, Sork VL (2004) Using genetic markers to estimate the pollen dispersal curve. Mol Ecol 13:937–954

    Article  PubMed  Google Scholar 

  • Bartsch D, Lehnen M, Clegg J, Pohl-Orf M, Schuphan I, Ellstrand NC (1999) Impact of gene flow from cultivated beet on genetic diversity of wild sea beet populations. Mol Ecol 8:1733–1741

    Article  PubMed  Google Scholar 

  • Bartsch DB, Brand U, Morak C, Pohl-Orf M, Schuphan I, Ellstrand NC (2001) Biosafety of hybrids between transgenic virus-resistant sugar beet and swiss chard. Ecol Appl 11:142–147

    Article  Google Scholar 

  • Bateman AJ (1947) Contamination of seed crops II. Wind pollination. Heredity 1:235–246

    Article  Google Scholar 

  • Boudry P, Mörchen M, Saumitou-Laprade P, Vernet Ph, Van Dijk H (1993) The origin and evolution of weed beets: consequences for the breeding and release of herbicide-resistant transgenic sugar beets. Theor Appl Genet 87:471–478

    Article  Google Scholar 

  • Brants I, Buchter-Larsen A, Waters S (1992) Safety assessment of the deliberate release of genetically modified sugar beet. Annual report BRIDGE European Council project CT-910298

  • Brunet Y, Dupont S, Delage S, Tulet P, Pinty J-P, Lac C, Escobar J (2008) Atmospheric modelling of maize pollen dispersal at regional scale. International conference on implications of GM crop cultivation at large spatial scales, Bremen, http://www.gmls.eu (accessed September 2008)

  • Chamberlain AC (1967) Cross-pollination between fields of sugar beet. Q J R Meteorol Soc 93:509–515

    Article  Google Scholar 

  • Cureton AN, Newbury HJ, Raybould AF, Ford-lloyd BV (2006) Genetic structure and gene flow in wild beet populations: the potential influence of habitat on transgene spread and risk assessment. J Appl Ecol 43:1203–1212

    Article  CAS  Google Scholar 

  • Dark SOS (1971) Experiments on the cross-pollination of sugar beet in the field. J Natl Inst Agric Bot 12:242–266

    Google Scholar 

  • Darmency H, Vigouroux Y, Gestat de Garambé T, Richard-Molard M, Muchembled C (2007) Transgene escape in sugar beet production fields: data from six years farm scale monitoring. Environ Biosafety Res 6:197–206

    Article  PubMed  Google Scholar 

  • De Marchis F, Wang Y, Stevanato P, Arcioni S, Bellucci M (2008) Genetic transformation of the sugar beet plastome. Transgenic Res 18(1):17–30. doi:10.1007/s11248-008-9193-4

    Article  PubMed  Google Scholar 

  • Devaux C, Lavigne C, Austerlitz F, Klein E (2007) Modelling and estimating pollen movement in oilseed rape (Brassica napus) at the landscape scale using genetic markers. Mol Ecol 16:487–499

    Article  PubMed  CAS  Google Scholar 

  • Down EE, Lavis CA (1930) Studies on methods for control of pollination in sugar beets. J Am Soc Agron 22:1–9

    Google Scholar 

  • Fauchère J, Richard-Molard M, Souverain F, Prats S, Pérarnaud V, Decquiedt B (2003) Cartographie des risques de montées en France en relation avec les températures de printemps et d’été: conséquences sur l’expérimentation et le conseil. Proceedings of the 1st Joint IIRB-ASSBT Congress, San Antonio, pp 189–205

  • Fénart S, Austerlitz F, Cuguen J, Arnaud JF (2007) Long distance pollen-mediated gene flow at a landscape level: the weed beet as a case study. Mol Ecol 16:3801–3813

    Article  PubMed  Google Scholar 

  • Ford-Lloyd BV, Hawkes JG (1986) Weed beets: their origin and classification. Acta Hortic 182:399–401

    Google Scholar 

  • Free JB, Williams IH, Longden PC, Jonhson MG (1975) Insect pollination of sugar beet (Beta vulgaris) seed crops. Ann Appl Biol 81:127–134

    Article  Google Scholar 

  • Gliddon CJ, Boudry P, Walker S (1999) Gene flow–a review of experimental evidence. In: Amijee F, Gliddon CJ, Gray AL (eds) Environmental impacts of genetically modified crops. DEFRA, London, pp 65–79

    Google Scholar 

  • Hornsey KG, Arnold MH (1979) The origins of weed beet. Ann Appl Biol 92:279–285

    Article  Google Scholar 

  • Jensen I, Bøgh H (1942) Om forhold der har indflydelse paa krydsningsfaren hos vindbestøvende kultuplanter. Tidsskrift Planteavl 46:138–166

    Google Scholar 

  • Klein EK, Lavigne C, Picault H, Renard M, Gouyon PH (2006) Pollen dispersal of oilseed rape: estimation of the dispersal function and effects of field dimension. J Appl Ecol 43:141–151

    Article  Google Scholar 

  • Lavigne C, Klein EK, Vallée P, Pierre J, Godelle B, Renard M (1998) A pollen-dispersal experiment with transgenic oilseed rape. Estimation of the average pollen dispersal of an individual plant within a field. Theor Appl Genet 96:886–896

    Article  Google Scholar 

  • Lavigne C, Klein EK, Couvet D (2002) Using seed purity data to estimate an average pollen mediated gene flow from crops to wild relatives. Theor Appl Genet 104:139–145

    Article  PubMed  Google Scholar 

  • Lavigne C, Klein EK, Mair JF, Le Ber F, Adamczyk K, Monod H, Angevin F (2008) How do genetically modified (GM) crops contribute to background levels of GM pollen in an agricultural landscape? J Appl Ecol. doi: 10.1111/j.1365-2664.01504.x

  • Longden PC, Scott RK, Tyldesley JB (1975) Bolting of sugar beet grown in England. Outlook Agric 8:188–193

    Google Scholar 

  • Madsen KH (1994) Weed management and impact on ecology of growing glyphosate tolerant sugarbeets (Beta vulgaris L.). PhD thesis, Royal Veterinary and Agricultural University, Copenhagen

  • Maletsky SI, Weisman NJ (1978) A population genetic analysis of self- and cross-incompatibility in sugar beet (Beta vulgaris L.). Theor Appl Genet 52:21–28

    Article  Google Scholar 

  • May MJ (2004) Weed beet: the hidden menace. Br Sugar Beet Rev 72:18–21

    Google Scholar 

  • Meier FC, Artschwager E (1938) Airplane collections of sugar-beet pollen. Science 88:507–508

    Article  PubMed  Google Scholar 

  • Perarnaud V, Souverain F, Prats S, Dequiedt B, Fauchere J, Richard-Molard M (2001). Influence du climat sur le phénomène de montée à graine de la betterave: synthèse. http://www.itbfr.org (accessed November, 2008)

  • Richard-Molard M, Gestat de Garambé T (1998) Utilisation de variétés tolérantes à un herbicide non sélectif. Conséquences sur le système de culture. Proceedings of the 61st IIRB Congress, pp 269–288

  • Saeglitz C, Pohl M, Bartsch D (2000) Monitoring gene flow from transgenic sugar beet using cytoplasmic male-sterile bait plants. Mol Ecol 9:2035–2040

    Article  PubMed  CAS  Google Scholar 

  • Scott RK (1970) The effect of weather on the concentration of pollen within sugar-beet seed crops. Ann Appl Biol 66:119–127

    Article  Google Scholar 

  • Scott RK, Longden PC (1970) Pollen release by diploid and tetraploid sugar-beet plants. Ann Appl Biol 66:129–135

    Article  Google Scholar 

  • Sester M, Tricault Y, Darmency H, Colbach N (2008) GeneSys-Beet: a model of the effects of cropping systems on gene flow between sugar beet and weed beet. Field Crops Res 107:245–256

    Article  Google Scholar 

  • Shi Y, Wang T, Li Y, Darmency H (2008) Impact of transgene inheritance on the mitigation of gene flow between crops and their wild relatives: the example of foxtail millet. Genetics 180:969–975

    Article  PubMed  Google Scholar 

  • Soukup J, Holec J (2004) Crop-wild interaction within the Beta vulgaris complex: agronomic aspects of weed beet in the Czech Republic. In: den Nijs HCM, Bartsch D, Sweet J (eds) Introgression from genetically modified plants into wild relatives. CABI Publishing, Wallingford, pp 203–218

    Google Scholar 

  • Stewart D, Campbell SC (1952) The dispersion of pollen in sugar beet seed plots. Proceedings of the American Society of Sugar Beet Technologists, 7th general meeting, pp 459–469

  • Stewart CN, Halfhill MD, Warwick SI (2003) Transgene introgression from genetically modified crops to their wild relatives. Nat Rev Genet 4:806–817

    Article  PubMed  CAS  Google Scholar 

  • Sukopp U, Pohl M, Driessen S, Bartsch D (2005) Feral beets—with help from the maritime wild? In: Gressel J (ed) Crop ferality and volunteerism. CRC Press, Boca Raton, pp 45–57

    Google Scholar 

  • Tyldesley JB (1978) Out-crossing in sugar-beet due to airborne pollen. Agric Meteorol 19:463–469

    Article  Google Scholar 

  • Viard F, Arnaud JF, Delescluse M, Cuguen J (2004) Tracing back seed and pollen flow within the crop-wild Beta vulgaris complex: genetic distinctiveness vs. hot spots of hybridization over a regional scale. Mol Ecol 13:1357–1364

    Article  PubMed  CAS  Google Scholar 

  • Vigouroux Y (2000) Betteraves transgéniques et betteraves adventices: étude des flux de gènes et de leurs conséquences. PhD thesis, Université of Burgundy, Dijon

  • Vigouroux Y, Darmency H, Gestat De Garambé T, Richard-Molard M (1999) Gene flow between sugar beet and weed beet. In: Lutman PJW (ed) Gene flow and agriculture. Relevance for transgenic crops, British Crop Protection Council, symposium proceedings no. 72, Farnham, pp 83–88