link.springer.com

Handling Missing Data in Item Response Theory. Assessing the Accuracy of a Multiple Imputation Procedure Based on Latent Class Analysis - Journal of Classification

  • ️Porcu, Mariano
  • ️Wed Mar 22 2017

References

  • AGRESTI, A. (2002), Categorical Data Analysis, Hoboken: Wiley-Interscience.

    Book  MATH  Google Scholar 

  • AKE, C.F. (2005), “Rounding After Multiple Imputation with Non-Binary Categorical Covariates”, paper presented at the annual meeting of the SAS User Group International, Philadelphia.

  • BAKER, F.B., and KIM, S.H. (2004), Item Response Theory: Parameter Estimation Techniques, New York: Dekker.

    MATH  Google Scholar 

  • BARALDI, A.N., and ENDERS, C.K. (2010), “An Introduction to Modern Missing Data Analyses”, Journal of School Psychology, 48, 5–37.

    Article  Google Scholar 

  • BERNAARDS, C.A., and SIJTSMA, K. (1999), “Factor Analysis of Multidimensional Polytomous Item Response Data from Ignorable Item Non Response”, Multivariate Behavioral Research, 34, 277–314.

    Article  Google Scholar 

  • BIRNBAUM, A. (1968), “Statistical Theories of Mental Test Scores”, in Some Latent Trait Models and Their Use in Inferring an Examinee’S Ability, eds F.M. Lord and M.R. Novick, Reading: Addsion-Wesley, pp. 395–497.

  • CARPITA, M., and MANISERA, M. (2011), “On the Imputation of Missing Data in Surveys with Likert-Type Scales”, Journal of Classification, 28, 93–112,

    Article  MathSciNet  Google Scholar 

  • EDELEN, M.O., and REEVE, B.B. (2007), “Applying Item Response Theory (IRT) Modeling to Questionnaire Development, Evaluation and Refinement”, Quality of Life Researches, 16, 5–18

    Article  Google Scholar 

  • ENDERS, G.K. (2004), “The Impact of Missing Data on Sample Reliability Estimates: Implications of Reliability Reporting Practices”, Educational and Psychological Measurement, 64(3), 419–436,

    Article  MathSciNet  Google Scholar 

  • FINCH, H. (2008), “Estimation of Item Response Theory Parameters in the Presence of Missing Data”, Journal of Educational Measurement, 45(3), 225–245.

    Article  Google Scholar 

  • FINCH, H. (2010), “Imputation Methods for Missing Categorical Questionnaire Data: A Comparison of Approaches”, Journal of Data Science, 8(8), 361–378.

    Google Scholar 

  • FINCH, H. (2011), “The Impact of Missing Data on the Detection of Nonuniform Differential Item Functioning”, Educational and Psychological Measurement, 71(4), 663–683.

    Article  MathSciNet  Google Scholar 

  • HUISMAN, M. (1999), Item Nonresponse: Occurence, Causes, and Imputation of Missing Answers to Test Items, Leiden, The Netherlands: DSWO Press.

    MATH  Google Scholar 

  • LINZER, D.A., and LEWIS, J. (2011), “poLCA: Polytomous Variable Latent Class Analysis”, Journal of Statistical Software, 42(10), 1–29.

    Article  Google Scholar 

  • LITTLE, R.J.A., and RUBIN, D.B. (2002), Statistical Analysis with Missing Data (2nd. ed.), New York: John Wiley.

  • MULLIS, I.V.S., MARTIN, M.O., FOY, P., and DRUCKER, K.T. (eds.) (2012), “PIRLS 2011 International Results in Reading”, 2012 International Association for the Evaluation of Educational, Chestnut Hill MA: TIMSS & PIRLS International Study Center Boston College.

  • NYLUND, K., ASPAROUHOV, T., and BENGT, O.M. 2007, “Deciding on the Number of Classes in Latent Class Analysis and Growth Mixture Modeling: A Monte Carlo Simulation Study”, Structural Equation Modeling, 14(4), 535–569.

    Article  MathSciNet  Google Scholar 

  • RAAIJMAKERS, A.W. (1999), “Effectiveness of Different Missing Data Treatments in Surveys with Likert-Type Data: Introducing the Relative Mean Substitution Approach”, Educational and Psychological Measurement, 59(5), 725–748.

    Article  Google Scholar 

  • RAGHUNATHAN, T.E., LEPKOWSKI, J.M., VAN HOEWYK, J., and SOLENBERGER, P. (2001), “A Multivariate Technique for Multiply Imputing Missing Values Using a Sequence of Regression Models”, Survey Methodology, 27, 85–95.

    Google Scholar 

  • RIZOPOULOS, D. (2006), “ltm: An R package for Latent Variable Modelling and Item Response Theory Analyses”, Journal of Statistical Software, 17(5), 1–25.

    Article  Google Scholar 

  • RUBIN, D. (1976), “Inference and Missing Data”, Biometrika, 63, 581–592.

    Article  MathSciNet  MATH  Google Scholar 

  • SAMEJIMA, F. (1969), “Estimation Of Ability Using a Response Pattern of Graded Scores”, Psychometrika Monograph, 17.

  • SCHAFER, J. (1997), Analysis of Incomplete Multivariate Data, London: Chapman and Hall.

    Book  MATH  Google Scholar 

  • SCHAFER, J., and GRAHAM, J.W. (2002), “Missing Data: Our View of the State of the Art”, Psychological Methods, 7(2), 147–177.

    Article  Google Scholar 

  • SIJTSMA, K., and VAN DER ARK, L.A., (2003), “Investigation and Treatment of Missing Item Scores in Test and Questionnaire Data”, Multivariate Behavioral Research, 38(4), 505–528.

    Article  Google Scholar 

  • SULIS, I. (2013), “A Further Proposal to Perform Multiple Imputation on a Bunch of Polythomous Items based on Latent Class Analysis”, in Statistical Models for Data Analysis: Studies in Classification, Data Analysis, and Knowledge Organization, eds. P. Giudici, S. Ingrassia, and M. Vichi, Heidelberg: Springer-Verlag.

  • SULIS, I., and PORCU, P. (2008), “Assessing the Effectiveness of a Stochastic Regression Imputation Method for Ordered Categorical Data”, CRENoS Working Papers, 4.

  • VAN BUUREN, S., and OUDSHOORN, C.G.M. (2011), “MICE: Multivariate Imputation by Chained Equations”, Journal of Statistical Software, 45(3), 1–67.

    Article  Google Scholar 

  • VERMUNT, J.K, VAN GINKEL, J.R., VAN DER ARK, L.A., and SIJTSMA, K. (2008), “Multiple Imputation of Categorical Data Using Latent Class Analysis”, Sociological Methodology, 33, 269–297.

  • WU, W., JIA, F., and ENDERS, C. (2015), “A Comparison of Imputation Strategies for Ordinal Missing Data on Likert Scale Variables”, Multivariate Behavioral Research, 50, 484–503.

Download references