link.springer.com

Comparative assessment of amphibious hearing in pinnipeds - Journal of Comparative Physiology A

  • ️Southall, Brandon L.
  • ️Sat Apr 06 2013
  • Babushina Ye S (1979) Localization by the dolphin of the source of tonal and pulse signals in water and in air. Vestnik Leningradskogo Universiteta Biologiva 3:119–121

    Google Scholar 

  • Babushina Ye S, Zaslavskii GL, Yurkevich LI (1991) Air and underwater hearing characteristics of the northern fur seal: audiograms, frequency and differential thresholds. Biophysics 36:909–913

    Google Scholar 

  • Branstetter BK, Finneran JJ (2008) Comodulation masking release in bottlenose dolphins (Tursiops truncatus). J Acoust Soc Am 124:625–633

    Article  PubMed  Google Scholar 

  • Brüel and Kjær (2008) Technical documentation: hand-held analyzers types 2250 and 2270. Brüel and Kjær, Sound and Vibration Measurement A/S, Nærum

    Google Scholar 

  • Cornsweet TN (1962) The staircase method in psychophysics. Am J Psychol 75:485–491

    Article  PubMed  CAS  Google Scholar 

  • Finneran JJ (2003) An integrated computer-controlled system for marine mammal auditory testing. SSC, San Diego, CA, 102 p

    Google Scholar 

  • Finneran JJ, Schlundt CE (2007) Underwater sound pressure variation and bottlenose dolphin (Tursiops truncatus) hearing thresholds in a small pool. J Acoust Soc Am 122:606–614

    Article  PubMed  Google Scholar 

  • Finneran JJ, Carder DA, Ridgway SH (2002) Low-frequency acoustic pressure, velocity, and intensity thresholds in a bottlenose dolphin (Tursiops truncatus) and white whale (Delphinapterus leucas). J Acoust Soc Am 111:447–456

    Article  PubMed  Google Scholar 

  • Finney DJ (1971) Probit analysis, 3rd edn. Cambridge UP, Cambridge

    Google Scholar 

  • Fobes JL, Smock CC (1981) Sensory capacities of marine mammals. Psychol Bull 89:288–307

    Article  PubMed  CAS  Google Scholar 

  • Gelfand SA (2001) Essentials of audiology, 2nd edn. Thieme, New York

    Google Scholar 

  • Gerstein ER, Gerstein L, Forsythe SE, Blue JE (1999) The underwater audiogram of the West Indian manatee (Trichechus manatus). J Acoust Soc Am 105:3575–3583

    Article  PubMed  CAS  Google Scholar 

  • Heffner HE (1983) Hearing in large and small dogs: absolute thresholds and size of the tympanic membrane. Behav Neurosci 97:310–318

    Article  Google Scholar 

  • Heffner RS, Heffner HE (1985a) Hearing range of the domestic cat. Hear Res 19:85–88

    Article  PubMed  CAS  Google Scholar 

  • Heffner RS, Heffner HE (1985b) Hearing in mammals: the least weasel. J Mammal 66:745–755

    Article  Google Scholar 

  • Hemilä S, Nummela S, Berta A, Reuter T (2006) High-frequency hearing in phocid and otariid pinnipeds: an interpretation based on inertial and cochlear constraints. J Acoust Soc Am 120:3463–3466

    Article  PubMed  Google Scholar 

  • Houser DS, Crocker DE, Reichmuth C, Mulsow J, Finneran JJ (2007) Auditory evoked potentials in northern elephant seals (Mirounga angustirostris). Aquat Mamm 33:110–121

    Article  Google Scholar 

  • Houser DS, Crocker DE, Finneran JJ (2008) Click-evoked potentials in a large marine mammal, the adult male northern elephant seal (Mirounga angustirostris). J Acoust Soc Am 124:44–47

    Article  PubMed  Google Scholar 

  • Johnson CS (1967) Sound detection thresholds in marine mammals. In: Tavolga WN (ed) Marine bio-acoustics, vol 2. Pergamon Press, Oxford, pp 247–260

    Google Scholar 

  • Kastak D, Schusterman RJ (1998) Low-frequency amphibious hearing in pinnipeds: methods, measurements, noise, and ecology. J Acoust Soc Am 103:2216–2228

    Article  PubMed  CAS  Google Scholar 

  • Kastak D, Schusterman RJ (1999) In-air and underwater hearing sensitivity of a northern elephant seal (Mirounga angustirostris). Can J Zool 77:1751–1758

    Google Scholar 

  • Kastak D, Schusterman RJ (2002) Changes in auditory sensitivity with depth in a free-diving California sea lion (Zalophus californianus). J Acoust Soc Am 112:329–333

    Article  PubMed  Google Scholar 

  • Kastelein RA, Nieuwstraten SH, Staal C, van Ligtenberg CL, Versteegh D (1997) Low-frequency aerial hearing of a harbor porpoise (Phocoena phocoena). In: Read AJ, Wiepkema PR, Nachtigall PE (eds) The biology of the harbor porpoise. De Spil Publishers, Woerden, pp 295–312

    Google Scholar 

  • Kastelein RA, Bunskoek P, Hagedoorn M, Au WWL, de Haan D (2002) Audiogram of a harbor porpoise (Phocoena phocoena) measured with narrow-band frequency-modulated signals. J Acoust Soc Am 112:334–344

    Article  PubMed  Google Scholar 

  • Kastelein RA, Wensveen PJ, Hoek L, Verboom WC, Terhune JM (2009) Underwater detection of tonal signals between 0.125 and 100 kHz by harbor seals (Phoca vitulina). J Acoust Soc Am 125:1222–1229

    Article  PubMed  Google Scholar 

  • Kelly JB, Kavanagh GL, Dalton JCH (1986) Hearing in the ferret (Mustela putorius): thresholds for pure tone detection. Hear Res 24:269–275

    Article  PubMed  CAS  Google Scholar 

  • Ketten DR (1992) The marine mammal ear: specializations for aquatic audition and echolocation. In: Webster DB, Fay RR, Popper AN (eds) The evolutionary biology of hearing. Springer, New York, pp 717–750

    Chapter  Google Scholar 

  • Killion MC (1978) Revised estimate of minimum audible pressure: where is the “missing 6 dB”? J Acoust Soc Am 63:1501–1508

    Article  PubMed  CAS  Google Scholar 

  • Liebschner A, Hanke W, Miersch L, Dehnhardt G (2005) Sensitivity of a tucuxi (Sotalia fluviatilis guianensis) to airborne sound. J Acoust Soc Am 117:436–441

    Article  PubMed  Google Scholar 

  • Lipatov NV (1992) Underwater hearing in seals: the role of the outer ear. In: Thomas JA, Kastelein RA, Supin AY (eds) Marine mammal sensory systems. Plenum Press, New York, pp 249–256

    Chapter  Google Scholar 

  • Møhl B (1968a) Auditory sensitivity of the common seal in air and water. J Aud Res 8:27–38

    Google Scholar 

  • Møhl B (1968b) Hearing in seals. In: Harrison RJ, Hubbard RC, Peterson RS, Rice CE, Schusterman RJ (eds) The behavior and physiology of pinnipeds. Appleton-Century-Crofts, New York, pp 172–195

    Google Scholar 

  • Mooney TA, Yamamoto M, Branstetter BK (2012) Hearing in cetaceans: from natural history to experimental biology. Adv Mar Biol 63:197–246

    Article  PubMed  Google Scholar 

  • Moore PWB, Schusterman RJ (1987) Audiometric assessment of northern fur seals, Callorhinus ursinus. Mar Mamm Sci 3:31–53

    Article  Google Scholar 

  • Mulsow J, Reichmuth C (2007) Electrophysiological assessment of temporal resolution in pinnipeds. Aquat Mamm 33:122–131

    Article  Google Scholar 

  • Mulsow JL, Reichmuth C (2010) Psychophysical and electrophysiological aerial audiograms of a Steller sea lion (Eumetopias jubatus). J Acoust Soc Am 127:2692–2701

    Article  PubMed  Google Scholar 

  • Mulsow J, Finneran JJ, Houser DS (2011) California sea lion (Zalophus californianus) aerial hearing sensitivity measured using auditory steady-state response and psychophysical methods. J Acoust Soc Am 129:2298–2306

    Article  PubMed  Google Scholar 

  • Mulsow J, Houser DS, Finneran JJ (2012a) Underwater psychophysical audiogram of a young male California sea lion (Zalophus californianus). J Acoust Soc Am 131:4182–4187

    Article  PubMed  Google Scholar 

  • Mulsow J, Reichmuth C, Houser D, Finneran JJ (2012b) Auditory evoked potential measurement of hearing sensitivity in pinnipeds. In: Popper AN, Hawkins A (eds) The effects of noise on aquatic life. Springer, Berlin, pp 73–76

    Chapter  Google Scholar 

  • Nummela S (2008) Hearing in aquatic mammals. In: Thewissen JGM, Nummela S (eds) Sensory evolution on the threshold: adaptations in secondarily aquatic vertebrates. University of California Press, Berkeley, pp 211–231

    Google Scholar 

  • Nummela S, Thewissen JGM (2008) The physics of sound in air and water. In: Thewissen JGM, Nummela S (eds) Sensory evolution on threshold: adaptations in secondarily aquatic vertebrates. University of California Press, Berkeley, pp 175–181

    Google Scholar 

  • Parvin SJ, Nedwell JR (1995) Underwater sound perception and the development of an underwater noise weighting scale. Underw Tech 21:12–19

    Article  Google Scholar 

  • Ramprashad F (1975) Aquatic adaptations in the ear of the harp seal Pagophilus groenlandicus (Erxleben, 1777). Rapp P-v Reun Cons Int Explor Mer 169:102–111

    Google Scholar 

  • Reichmuth C, Southall BL (2012) Underwater hearing in California sea lions (Zalophus californianus): expansion and interpretation of existing data. Mar Mamm Sci 28:358–363

    Article  Google Scholar 

  • Reichmuth C, Ghoul A, Southall BL (2012) Temporal processing of low-frequency sounds by seals (L). J Acoust Soc Am 132:2147–2150

    Article  PubMed  Google Scholar 

  • Repenning CA (1972) Underwater hearing in seals: Functional morphology. In: Harrison RJ (ed) Functional anatomy of marine mammals, vol 1. Academic Press, London, pp 307–331

    Google Scholar 

  • Richardson WJ, Greene CR, Malme CI, Thomson DH (1995) Marine mammals and noise. Academic, San Diego

    Google Scholar 

  • Robinson PW, Costa DP, Crocker DE, Gallo-Reynoso JP, Champange CD, Fowler MA, Goetsch C, Goetz KT, Hassrick JL, Huckstadt LA, Kuhn CE, Maresh JL, Maxwell SM, McDonald BI, Peterson SH, Simmons SE, Teutschel NM, Villegas-Amtmann S, Yoda K (2012) Foraging behavior and success of a mesopelagic predator in the northeast Pacific Ocean: insights from a data-rich species, the northern elephant seal. PLoS ONE 7:e36728

    Article  PubMed  CAS  Google Scholar 

  • Schusterman RJ (1974a) Auditory sensitivity of a California sea lion to airborne sound. J Acoust Soc Am 56:1248–1251

    Article  PubMed  CAS  Google Scholar 

  • Schusterman RJ (1974b) Low false-alarm rates in signal detection by marine mammals. J Acoust Soc Am 55:845–848

    Article  PubMed  CAS  Google Scholar 

  • Schusterman RJ, Balliet RF, Nixon J (1972) Underwater audiogram of the California sea lion by the conditioned vocalization technique. J Exp Anal Behav 17:339–350

    Article  PubMed  CAS  Google Scholar 

  • Schusterman RJ, Kastak D, Levenson DH, Reichmuth CJ, Southall BL (2000) Why pinnipeds don’t echolocate. J Acoust Soc Am 107:2256–2264

    Article  PubMed  CAS  Google Scholar 

  • Siler W (1969) Near-and far fields in a marine environment. J Acoust Soc Am 46:483–484

    Article  Google Scholar 

  • Southall BL, Schusterman RJ, Kastak D (2000) Masking in three pinnipeds: underwater, low-frequency critical ratios. J Acoust Soc Am 108:1322–1326

    Article  PubMed  CAS  Google Scholar 

  • Southall BL, Schusterman RJ, Kastak D (2003) Masking in three pinnipeds: aerial critical ratios and direct critical bandwidth measurements. J Acoust Soc Am 114(3):1660–1666

    Article  PubMed  Google Scholar 

  • Southall BLS, Schusterman RJ, Kastak D, Reichmuth Kastak C (2005) Reliability of underwater hearing thresholds. Acoust Res Lett Onl 6:243–249

    Article  Google Scholar 

  • Southall BL, Bowles AE, Ellison WT, Finneran JJ, Gentry RL, Greene CR, Kastak D, Ketten DK, Miller JH, Nachtigall PE, Richardson WJ, Thomas JA, Tyack PL (2007) Marine mammal noise exposure criteria: initial scientific recommendations. Aquat Mamm 33:412–521

    Article  Google Scholar 

  • Stebbins WC (1970) Principles of animal psychophysics. In: Stebbins WC (ed) Animal psychophysics: the design and conduct of sensory experiments. Appleton-Century-Crofts, New York, pp 1–19

    Chapter  Google Scholar 

  • Supin AY, Popov VV, Mass AM (2001) The sensory physiology of aquatic mammals. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  • Terhune JM (1988) Detection thresholds of a harbour seal to repeated underwater high-frequency, short-duration sinusoidal pulses. Can J Zool 66:1578–1582

    Article  Google Scholar 

  • Terhune JM (1991) Masked and unmasked pure tone detection thresholds of a harbour seal listening in air. Can J Zool 69:2059–2066

    Article  Google Scholar 

  • Terhune JM, Ronald K (1971) The harp seal, Pagophilus groenlandicus (Erxleben 1777). X. The air audiogram. Can J Zool 49:385–390

    Article  PubMed  CAS  Google Scholar 

  • Terhune JM, Ronald K (1972) The harp seal, Pagophilus groenlandicus (Erxleben 1777). III. The underwater audiogram. Can J Zool 50:565–569

    Article  PubMed  CAS  Google Scholar 

  • Thomas J, Chun N, Au W, Pugh K (1988) Underwater audiogram of a false killer whale (Pseudorca crassidens). J Acoust Soc Am 84:936–940

    Article  PubMed  CAS  Google Scholar 

  • Turnbull SD, Terhune JM (1990) White noise and pure tone masking of pure tone thresholds of a harbor seal listening in air and underwater. Can J Zool 68:2090–2097

    Article  Google Scholar 

  • Wainwright WN (1958) Comparison of hearing thresholds in air and in water. J Acoust Soc Am 30:1025–1029

    Article  Google Scholar 

  • Wartzok D, Ketten DR (1999) Marine mammal sensory systems. In: Reynolds JE III, Rommel SA (eds) Biology of marine mammals. Smithsonian Institute, Washington, D.C., pp 117–175

    Google Scholar 

  • Watkins WA, Wartzok D (1985) Sensory biophysics of marine mammals. Mar Mamm Sci 3:219–260

    Article  Google Scholar 

  • Wolski LF, Anderson RC, Bowles AE, Yochem PK (2003) Measuring hearing in the harbor seal (Phoca vitulina): comparison of behavioral and auditory brainstem response techniques. J Acoust Soc Am 113:629–637

    Article  PubMed  Google Scholar 

  • Yost WA (2000) Fundamentals of hearing: an introduction, 4th edn. Academic Press, San Diego

    Google Scholar