link.springer.com

Sources and intensity of CH4 production in paddy soils depend on iron oxides and microbial biomass - Biology and Fertility of Soils

  • ️Ge, Tida
  • ️Tue Jan 11 2022

References

  • Achtnich C, Friedhelm B, Conrad R (1995) Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil. Biol Fertil Soils 19:65–72

    Article  CAS  Google Scholar 

  • Adhikari D, Zhao Q, Das K, Mejia J, Huang R, Wang X, Poulson SR, Tang Y, Roden EE, Yang Y (2017) Dynamics of ferrihydrite-bound organic carbon during microbial Fe reduction. Geochim Cosmochim Ac 212:221–233

    Article  CAS  Google Scholar 

  • Ali MA, Inubushi K, Kim PJ, Amin S (2019) Management of paddy soil towards low greenhouse gas emissions and sustainable rice production in the changing climatic conditions. In: Vázquez-Luna D, Cuevas-Díaz MDC (eds) Soil Contamination and Alternatives for Sustainable Development. Intech Open, London, pp 89–107

    Google Scholar 

  • Atkinson RJ, Posner AM, Quirk JP (1967) Adsorption of potential determining ions at the ferric oxide-aqueous electrolyte interface. J Chem Phys 71:550–558

    Article  CAS  Google Scholar 

  • Bose S, Hochella MF, Gorby YA, Kennedy DW, McCready DE, Madden AS, Lower BH (2009) Bioreduction of hematite nanoparticles by the dissimilatory iron reducing bacterium Shewanella oneidensis MR-1. Geochim Cosmochim Acta 73:962–976

    Article  CAS  Google Scholar 

  • Chen L, Luo Y, Xu J, Yu Z, Zhang K, Brookes PC (2016) Assessment of bacterial communities and predictive functional profiling in soils subjected to short-term fumigation-incubation. Microb Ecol 72:240–251

    Article  CAS  PubMed  Google Scholar 

  • Chidthaisong A, Conrad R (2000) Turnover of glucose and acetate coupled to reduction of nitrate, ferric iron and sulfate and to methanogenesis in anoxic rice field soil. FEMS Microbiol Ecol 31:73–86

    Article  CAS  PubMed  Google Scholar 

  • Chin KJ, Conrad R (1995) Intermediary metabolism in methanogenic paddy soil and the influence of temperature. FEMS Microbiol Ecol 18:85–102

    Article  CAS  Google Scholar 

  • Conrad R (1999) Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol Ecol 28:193–202

    Article  CAS  Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses. Wiley-VCH GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  • DeLaune RD, Reddy KR (2004) Redox potential. In: Hillel D (ed) Encyclopedia of Soils in the Environment. Academic Press, London, pp 366–371

    Google Scholar 

  • Dippold M, Biryukov M, Kuzyakov Y (2014) Sorption affects amino acid pathways in soil: implications from position-specific labeling of alanine. Soil Biol Biochem 72:180–192

    Article  CAS  Google Scholar 

  • Dominguez-Mendoza CA, Bello-Lopez JM, Navarro-Noya YE, de Leon-Lorenzana AS, Delgado-Balbuena L, Gomez-Acata S, Ruiz-Valdiviezo VM, Ramirez-Villanueva DA, Luna-Guido M, Dendooven L (2014) Bacterial community structure in fumigated soil. Soil Biol Biochem 73:122–129

    Article  CAS  Google Scholar 

  • Fenchel T, King GM, Blackburn TH (2012) Chapter 1 - Bacterial Metabolism. In: Fenchel T, King GM, Blackburn TH (eds) Bacterial Biogeochemistry: The Ecophysiology of Mineral Cycling, 3rd edn. Academic Press, London, pp 1–31

    Google Scholar 

  • Furukawa Y, Inubushi K (2004) Effect of application of iron materials on methane and nitrous oxide emissions from two types of paddy soils. Soil Sci Plant Nutr 50:917–924

    Article  CAS  Google Scholar 

  • Ge T, Li B, Zhu Z, Hu Y, Yuan H, Dorodnikov M, Jones DL, Wu J, Kuzyakov Y (2017) Rice rhizodeposition and its utilization by microbial groups depends on N fertilization. Biol Fertil Soils 53:37–48

    Article  CAS  Google Scholar 

  • Han J, Shi L, Wang Y, Chen Z, Wu L (2018) The regulatory role of endogenous iron on greenhouse gas emissions under intensive nitrogen fertilization in subtropical soils of China. Environ Sci Pollut Res 25:14511–14520

    Article  CAS  Google Scholar 

  • Hanke A, Sauerwein M, Kaiser K, Kalbitz K (2014) Does anoxic processing of dissolved organic matter affect organic–mineral interactions in paddy soils? Geoderma 228:62–66

    Article  Google Scholar 

  • Hansel CM, Benner SG, Nico P, Fendorf S (2004) Structural constraints of ferric (hydr)oxides on dissimilatory iron reduction and the fate of Fe(II). Geochim Cosmochim Acta 68:3217–3229

    Article  CAS  Google Scholar 

  • Hori T, Müller A, Igarashi Y, Conrad R, Friedrich MW (2010) Identification of iron-reducing microorganisms in anoxic rice paddy soil by 13C-acetate probing. ISME J 4:267–278

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Wu H, Sun Z, Peng Q, Zhao J, Hu R (2020) Ferrous iron addition decreases methane emissions induced by rice straw in flooded paddy soils. ACS Earth Space Chem 4:843–853

    Article  CAS  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (Eds.) Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 1535

  • IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. In: Pachauri RK, Meyer LA (Eds.) Working Group II Contribution to the Fifth Assessment Report. Cambridge University Press, Cambridge, pp 46

  • Jӓckel U, Russo S, Schnell S (2005) Enhanced iron reduction by iron supplement: a strategy to reduce methane emission from paddies. Soil Biol Biochem 37:2150–2154

    Article  Google Scholar 

  • Kaiser K, Mikutta R, Guggenberger G (2007) Increased stability of organic matter sorbed to ferrihydrite and goethite on aging. Soil Sci Soc Am J 71:711–719

    Article  CAS  Google Scholar 

  • Kalbitz K, Schwesig D, Rethemeyer J, Matzner E (2005) Stabilization of dissolved organic matter by sorption to the mineral soil. Soil Biol Biochem 37:1319–1331

    Article  CAS  Google Scholar 

  • Kato S, Hashimoto K, Watanabe K (2012) Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals. Environ Microbiol 14:1646–1654

    Article  CAS  PubMed  Google Scholar 

  • Li B, Ge T, Hill PW, Jones DL, Zhu Z, Zhran M, Wu J (2020a) Experimental strategies to measure the microbial uptake and mineralization kinetics of dissolved organic carbon in soil. Soil Ecol Lett 2:180–187

    Article  Google Scholar 

  • Li H, Peng J, Weber KA, Zhu Y (2011) Phylogenetic diversity of Fe(III)-reducing microorganisms in rice paddy soil: enrichment cultures with different short-chain fatty acids as electron donors. J Soil Sediment 11:1234–1242

    Article  CAS  Google Scholar 

  • Li Y, Shahbaz M, Zhu Z, Deng Y, Tong Y, Chen L, Wu J, Ge T (2021) Oxygen availability determines key regulators in soil organic carbon mineralisation in paddy soils. Soil Biol Biochem 153:108106

    Article  CAS  Google Scholar 

  • Li Y, Shahbaz M, Zhu Z, Deng Y, Wu J, Ge T (2020b) Contrasting response of organic carbon mineralisation to iron oxide addition under conditions of low and high microbial biomass in anoxic paddy soil. Biol Fertil Soils 57:117–129

    Article  Google Scholar 

  • Li Y, Yuan H, Xiao M, Deng Y, Ye R, Zhu Z, Inubushi K, Wu J, Ge T (2020c) Legacy effect of elevated CO2 and N fertilization on mineralization and retention of rice (Oryza sativa L.) rhizodeposit-C in paddy soil aggregates. Soil Ecol Lett 2020. https://doi.org/10.1007/s42832-020-0066-y

  • Liu P, Klose M, Conrad R (2019) Temperature-dependent network modules of soil methanogenic bacterial and archaeal communities. Front Microbiol 10:496

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Ge T, van Groenigen KJ, Yang Y, Wang P, Cheng K, Zhu Z, Wang J, Li Y, Guggenberger G, Sardans J, Penuelas J, Wu J, Kuzyakov Y (2021) Rice paddy soils are a quantitatively important carbon store according to a global synthesis. Commun Earth Environ 2:154

    Article  Google Scholar 

  • Malyan SK, Bhatia A, Kumar A, Gupta DK, Singh R, Kumar SS, Tomer R, Kumar O, Jain N (2016) Methane production, oxidation and mitigation: a mechanistic understanding and comprehensive evaluation of influencing factors. Sci Total Environ 572:874–896

    Article  CAS  PubMed  Google Scholar 

  • Masscheleyn PH, DeLaune RD, Patrick WH (1993) Methane and nitrous oxide emissions from laboratory measurements of rice soil suspension: effect of soil oxidation–reduction status. Chemosphere 26:251–260

    Article  CAS  Google Scholar 

  • Palmer RR, Reeve IN (1993) Methanogen genes and the molecular biology of methane biosynthesis. In: Sebald M (Eds.) Genetics and Molecular Biology of Anaerobic Bacteria. Springer Verlag, Berlin, pp 13–35

  • Peng QA, Shaaban M, Hu R, Mo Y, Wu Y (2015) Effects of soluble organic carbon addition on CH4 and CO2 emissions from paddy soils regulated by iron reduction processes. Soil Res 53:316–324

    Article  CAS  Google Scholar 

  • Reddy KR, DeLaune RD (2008) Electrochemical properties. In: Reddy KR, DeLaune RD (eds) Biogeochemistry of Wetlands: Science and Applications. CRC Press, Boca Raton, pp 67–110

    Chapter  Google Scholar 

  • Rochette P, Flanagan LB, Gregorich EG (1999) Separating soil respiration into plant and soil components using analyses of the natural abundance of carbon-13. Soil Sci Soc Am J 63:1207–1213

    Article  CAS  Google Scholar 

  • Roden EE, Wetzel RG (2003) Competition between Fe(III)-reducing and methanogenic bacteria for acetate in iron-rich freshwater sediments. Microb Ecol 45:252–258

    Article  CAS  PubMed  Google Scholar 

  • Rospert S, Bocher R, Albracht SPJ, Thauer RK (1991) Methyl-coenzyme M reductase preparations with high specific activity from H2-preincubated cells of Methanobacterium thermoautotrophicum. FEBS Lett 291:371–375

    Article  CAS  PubMed  Google Scholar 

  • Scholten JCM, Conrad R, Stams AJM (2000) Effect of 2-bromo-ethane sulfonate, molybdate and chloroform on acetate consumption by methanogenic and sulfate-reducing populations in freshwater sediment. FEMS Microbiol Ecol 32:35–42

    Article  CAS  PubMed  Google Scholar 

  • Schwertmann U, Cornell RM (2000) Iron oxides in the laboratory: preparation and characterization, 2nd edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Shimizu M, Zhou J, Schröder C, Obst M, Kappler A, Borch T (2013) Dissimilatory reduction and transformation of ferrihydrite-humic acid coprecipitates. Environ Sci Technol 47:13375–13384

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Qian X, Shaaban M, Wu L, Hu J, Hu R (2019) Effects of iron(III) reduction on organic carbon decomposition in two paddy soils under flooding conditions. Environ Sci Pollut Res 26:12481–12490

    Article  CAS  Google Scholar 

  • Thamdrup B (2000) Bacterial manganese and iron reduction in aquatic sediments. Adv Microb Ecol 16:41–84

    Article  CAS  Google Scholar 

  • Tyagi L, Kumari B, Singh SN (2010) Water management—a tool for methane mitigation from irrigated paddy fields. Sci Total Environ 408:1085–1090

    Article  CAS  PubMed  Google Scholar 

  • van Bodegom PM, Scholten JCM, Stams AJM (2004) Direct inhibition of methanogenesis by ferric iron. FEMS Microbiol Ecol 49:261–268

    Article  PubMed  Google Scholar 

  • Vogelsang V, Fiedler S, Jahn R, Kaiser K (2016) In-situ transformation of iron-bearing minerals in marshland-derived paddy subsoil. Eur J Soil Sci 67:676–685

    Article  CAS  Google Scholar 

  • Wang ZP, DeLaune RD, Masscheleyn PH, Patrick WH (1993) Soil redox and pH effects on methane production in a flooded rice soil. Soil Sci Soc Am J 57:382–385

    Article  CAS  Google Scholar 

  • Wei L, Ge T, Zhu Z, Luo Y, Yang Y, Xiao M, Yan Z, Li Y, Wu J, Kuzyakov Y (2021) Comparing carbon and nitrogen stocks in paddy and upland soils: accumulation, stabilization mechanisms, and environmental drivers. Geoderma 398:115121

    Article  CAS  Google Scholar 

  • Wei L, Ge T, Zhu Z, Ye R, Peñuelas J, Li Y, Lynn TM, Jones DL, Wu J, Kuzyakov Y (2022) Paddy soils have much higher microbial biomass than upland 1 soils: review of origin, mechanisms, and drivers. Agric Ecosyst Environ 326:107798

    Article  Google Scholar 

  • Wu J, Joergensen RG, Pommerening B, Chaussod R, Brookes PC (1990) Measurement of soil microbial biomass C by fumigation extraction an automated procedure. Soil Biol Biochem 22:1167–1169

    Article  CAS  Google Scholar 

  • Xu S, Geng W, Sayer EJ, Zhou G, Zhou P, Liu C (2020) Soil microbial biomass and community responses to experimental precipitation change: a meta-analysis. Soil Ecol Lett 2:93–103

    Article  Google Scholar 

  • Yamada C, Kato S, Kimura S, Ishii M, Igarashi Y (2014) Reduction of Fe(III) oxides by phylogenetically and physiologically diverse thermophilic methanogens. FEMS Microbiol Ecol 89:637–645

    Article  CAS  PubMed  Google Scholar 

  • Ye R, Horwath WR (2017) Influence of rice straw on priming of soil C for dissolved organic C and CH4 production. Plant Soil 417:231–241

    Article  CAS  Google Scholar 

  • Zhang J, Dong H, Liu D, Fischer TB, Wang S, Huang L (2012) Microbial reduction of Fe(III) in illite–smectite minerals by methanogen Methanosarcina mazei. Chem Geol 292–293:35–44

    Article  Google Scholar 

  • Zhou G, Gao S, Xu C, Zeng N, Rees RM, Cao W (2020) Co-incorporation of Chinese milk vetch (Astragalus sinicus L.) and rice (Oryza sativa L.) straw minimizes CH4 emissions by changing the methanogenic and methanotrophic communities in a paddy soil. Eur J Soil Sci 71:924–939

    CAS  Google Scholar 

  • Zhu Z, Zeng G, Ge T, Hu Y, Tong C, Shibistova O, He X, Wang J, Guggenberger G, Wu J (2016) Fate of rice shoot and root residues, rhizodeposits, and microbe-assimilated carbon in paddy soil - Part 1: Decomposition and priming effect. Biogeosciences 13:4481–4489

    Article  CAS  Google Scholar 

  • Zhuang L, Xu L, Tang J, Zhou S (2015a) Effect of ferrihydrite biomineralization on methanogenesis in an anaerobic incubation from paddy soil. J Geophys Res Biogeo 120:876–886

    Article  CAS  Google Scholar 

  • Zhuang L, Tang J, Wang Y, Hu M, Zhou S (2015b) Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation. J Hazard Mater 293:37–45

    Article  CAS  PubMed  Google Scholar 

Download references