link.springer.com

Soluble pathological tau in the entorhinal cortex leads to presynaptic deficits in an early Alzheimer’s disease model - Acta Neuropathologica

  • ️Hyman, Bradley T.
  • ️Sun Nov 24 2013
  • Bellone C, Luscher C (2005) mGluRs induce a long-term depression in the ventral tegmental area that involves a switch of the subunit composition of AMPA receptors. Eur J Neurosci 21(5):1280–1288. doi:10.1111/j.1460-9568.2005.03979.x

    Article  PubMed  Google Scholar 

  • Bi M, Ittner A, Ke YD, Gotz J, Ittner LM (2011) Tau-targeted immunization impedes progression of neurofibrillary histopathology in aged P301L tau transgenic mice. PLoS ONE 6(12):e26860. doi:10.1371/journal.pone.0026860

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Binder LI, Guillozet-Bongaarts AL, Garcia-Sierra F, Berry RW (2005) Tau, tangles, and Alzheimer’s disease. Biochim Biophys Acta 1739(2–3):216–223. doi:10.1016/j.bbadis.2004.08.014

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259

    Article  CAS  PubMed  Google Scholar 

  • Carmel G, Mager EM, Binder LI, Kuret J (1996) The structural basis of monoclonal antibody Alz50’s selectivity for Alzheimer’s disease pathology. J Biol Chem 271(51):32789–32795

    Article  CAS  PubMed  Google Scholar 

  • Chandra S, Fornai F, Kwon HB, Yazdani U, Atasoy D, Liu X, Hammer RE, Battaglia G, German DC, Castillo PE, Sudhof TC (2004) Double-knockout mice for alpha- and beta-synucleins: effect on synaptic functions. Proc Natl Acad Sci USA 101(41):14966–14971. doi:10.1073/pnas.0406283101

    Article  CAS  PubMed  Google Scholar 

  • Chiamulera C, Epping-Jordan MP, Zocchi A, Marcon C, Cottiny C, Tacconi S, Corsi M, Orzi F, Conquet F (2001) Reinforcing and locomotor stimulant effects of cocaine are absent in mGluR5 null mutant mice. Nat Neurosci 4(9):873–874. doi:10.1038/nn0901-873nn0901-873

    Article  CAS  PubMed  Google Scholar 

  • Czerniawski J, Ree F, Chia C, Ramamoorthi K, Kumata Y, Otto TA (2011) The importance of having Arc: expression of the immediate-early gene Arc is required for hippocampus-dependent fear conditioning and blocked by NMDA receptor antagonism. J Neurosci 31(31):11200–11207. doi:10.1523/JNEUROSCI.2211-11.2011

    Article  CAS  PubMed  Google Scholar 

  • de Calignon A, Polydoro M, Suarez-Calvet M, William C, Adamowicz DH, Kopeikina KJ, Pitstick R, Sahara N, Ashe KH, Carlson GA, Spires-Jones TL, Hyman BT (2012) Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron 73(4):685–697. doi:10.1016/j.neuron.2011.11.033

    Article  PubMed Central  PubMed  Google Scholar 

  • Debanne D, Guerineau NC, Gahwiler BH, Thompson SM (1996) Paired-pulse facilitation and depression at unitary synapses in rat hippocampus: quantal fluctuation affects subsequent release. J Physiol 491(Pt 1):163–176

    CAS  PubMed  Google Scholar 

  • Dittman JS, Regehr WG (1998) Calcium dependence and recovery kinetics of presynaptic depression at the climbing fiber to Purkinje cell synapse. J Neurosci 18(16):6147–6162

    CAS  PubMed  Google Scholar 

  • Ebert DH, Greenberg ME (2013) Activity-dependent neuronal signalling and autism spectrum disorder. Nature 493(7432):327–337. doi:10.1038/nature11860

    Article  CAS  PubMed  Google Scholar 

  • Elmqvist D, Quastel DM (1965) A quantitative study of end-plate potentials in isolated human muscle. J Physiol 178(3):505–529

    CAS  PubMed  Google Scholar 

  • Fox LM, William CM, Adamowicz DH, Pitstick R, Carlson GA, Spires-Jones TL, Hyman BT (2011) Soluble tau species, not neurofibrillary aggregates, disrupt neural system integration in a tau transgenic model. J Neuropathol Exp Neurol 70(7):588–595. doi:10.1097/NEN.0b013e318220a658

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gallyas F (1971) Silver staining of Alzheimer’s neurofibrillary changes by means of physical development. Acta Morphol Acad Sci Hung 19(1):1–8

    CAS  PubMed  Google Scholar 

  • Ghasemzadeh MB, Permenter LK, Lake R, Worley PF, Kalivas PW (2003) Homer1 proteins and AMPA receptors modulate cocaine-induced behavioural plasticity. Eur J Neurosci 18(6):1645–1651. doi:2880

    Article  PubMed  Google Scholar 

  • Greenberg SG, Davies P, Schein JD, Binder LI (1992) Hydrofluoric acid-treated tau PHF proteins display the same biochemical properties as normal tau. J Biol Chem 267(1):564–569

    CAS  PubMed  Google Scholar 

  • Harris JA, Koyama A, Maeda S, Ho K, Devidze N, Dubal DB, Yu GQ, Masliah E, Mucke L (2012) Human P301L-mutant tau expression in mouse entorhinal-hippocampal network causes tau aggregation and presynaptic pathology but no cognitive deficits. PLoS ONE 7(9):e45881. doi:10.1371/journal.pone.0045881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hasegawa M, Arai T, Akiyama H, Nonaka T, Mori H, Hashimoto T, Yamazaki M, Oyanagi K (2007) TDP-43 is deposited in the Guam parkinsonism-dementia complex brains. Brain 130(Pt 5):1386–1394. doi:10.1093/brain/awm065

    Article  PubMed  Google Scholar 

  • Hyman BT, Van Hoesen GW, Damasio AR, Barnes CL (1984) Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science 225(4667):1168–1170

    Article  CAS  PubMed  Google Scholar 

  • Ingelsson M, Fukumoto H, Newell KL, Growdon JH, Hedley-Whyte ET, Frosch MP, Albert MS, Hyman BT, Irizarry MC (2004) Early Abeta accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain. Neurology 62(6):925–931

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Sun S, Nedergaard M, Kang J (2000) Paired-pulse modulation at individual GABAergic synapses in rat hippocampus. J Physiol 523(Pt 2):425–439 PHY_0118 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Jicha GA, Bowser R, Kazam IG, Davies P (1997) Alz-50 and MC-1, a new monoclonal antibody raised to paired helical filaments, recognize conformational epitopes on recombinant tau. J Neurosci Res 48(2):128–132. doi:10.1002/(SICI)1097-4547(19970415)48:2<128:AID-JNR5>3.0.CO;2-E

    Article  CAS  PubMed  Google Scholar 

  • Katz B, Miledi R (1968) The role of calcium in neuromuscular facilitation. J Physiol 195(2):481–492

    CAS  PubMed  Google Scholar 

  • Ke YD, Dramiga J, Schutz U, Kril JJ, Ittner LM, Schroder H, Gotz J (2012) Tau-mediated nuclear depletion and cytoplasmic accumulation of SFPQ in Alzheimer’s and Pick’s disease. PLoS ONE 7(4):e35678. doi:10.1371/journal.pone.0035678

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim JH, Vezina P (1998) Metabotropic glutamate receptors are necessary for sensitization by amphetamine. Neuro Report 9(3):403–406

    Google Scholar 

  • Kirischuk S, Clements JD, Grantyn R (2002) Presynaptic and postsynaptic mechanisms underlie paired pulse depression at single GABAergic boutons in rat collicular cultures. J Physiol 543(Pt 1):99–116 PHY_021576 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Kopeikina KJ, Carlson GA, Pitstick R, Ludvigson AE, Peters A, Luebke JI, Koffie RM, Frosch MP, Hyman BT, Spires-Jones TL (2011) Tau accumulation causes mitochondrial distribution deficits in neurons in a mouse model of tauopathy and in human Alzheimer’s disease brain. Am J Pathol 179(4):2071–2082. doi:10.1016/j.ajpath.2011.07.004

    Article  CAS  PubMed  Google Scholar 

  • Kopeikina KJ, Hyman BT, Spires-Jones TL (2012) Soluble forms of tau are toxic in Alzheimer’s disease. Trans Neurosci 3(3):223–233. doi:10.2478/s13380-012-0032-y

    Article  Google Scholar 

  • Ksiezak-Reding H, Davies P, Yen SH (1988) Alz 50, a monoclonal antibody to Alzheimer’s disease antigen, cross-reacts with tau proteins from bovine and normal human brain. J Biol Chem 263(17):7943–7947

    CAS  PubMed  Google Scholar 

  • Kwon HB, Castillo PE (2008) Long-term potentiation selectively expressed by NMDA receptors at hippocampal mossy fiber synapses. Neuron 57(1):108–120. doi:10.1016/j.neuron.2007.11.024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee D, Lee KH, Ho WK, Lee SH (2007) Target cell-specific involvement of presynaptic mitochondria in post-tetanic potentiation at hippocampal mossy fiber synapses. J Neurosci 27(50):13603–13613. doi:10.1523/JNEUROSCI.3985-07.2007

    Article  CAS  PubMed  Google Scholar 

  • Lee JS, Kim MH, Ho WK, Lee SH (2008) Presynaptic release probability and readily releasable pool size are regulated by two independent mechanisms during posttetanic potentiation at the calyx of Held synapse. J Neurosci 28(32):7945–7953. doi:10.1523/JNEUROSCI.2165-08.2008

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Kim MH, Lee JY, Lee D, Park KH, Ho WK (2007) Na +/Ca2 + exchange and Ca2 + homeostasis in axon terminals of mammalian central neurons. Ann N Y Acad Sci 1099:396–412. doi:1099/1/39610.1196/annals.1387.011

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Drouet V, Wu JW, Witter MP, Small SA, Clelland C, Duff K (2012) Trans-synaptic spread of tau pathology in vivo. PLoS ONE 7(2):e31302. doi:10.1371/journal.pone.0031302

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Manabe T, Wyllie DJ, Perkel DJ, Nicoll RA (1993) Modulation of synaptic transmission and long-term potentiation: effects on paired pulse facilitation and EPSC variance in the CA1 region of the hippocampus. J Neurophysiol 70(4):1451–1459

    CAS  PubMed  Google Scholar 

  • Mennerick S, Zorumski CF (1995) Presynaptic influence on the time course of fast excitatory synaptic currents in cultured hippocampal cells. J Neurosci 15(4):3178–3192

    CAS  PubMed  Google Scholar 

  • O’Donovan MJ, Rinzel J (1997) Synaptic depression: a dynamic regulator of synaptic communication with varied functional roles. Trends Neurosci 20(10):431–433 S0166-2236(97)01124-7 [pii]

    Article  PubMed  Google Scholar 

  • Otvos L Jr, Feiner L, Lang E, Szendrei GI, Goedert M, Lee VM (1994) Monoclonal antibody PHF-1 recognizes tau protein phosphorylated at serine residues 396 and 404. J Neurosci Res 39(6):669–673. doi:10.1002/jnr.490390607

    Article  CAS  PubMed  Google Scholar 

  • Plath N, Ohana O, Dammermann B, Errington ML, Schmitz D, Gross C, Mao X, Engelsberg A, Mahlke C, Welzl H, Kobalz U, Stawrakakis A, Fernandez E, Waltereit R, Bick-Sander A, Therstappen E, Cooke SF, Blanquet V, Wurst W, Salmen B, Bosl MR, Lipp HP, Grant SG, Bliss TV, Wolfer DP, Kuhl D (2006) Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories. Neuron 52(3):437–444. doi:10.1016/j.neuron.2006.08.024

    Article  CAS  PubMed  Google Scholar 

  • Polydoro M, Acker CM, Duff K, Castillo PE, Davies P (2009) Age-dependent impairment of cognitive and synaptic function in the htau mouse model of tau pathology. J Neurosci 29(34):10741–10749. doi:10.1523/JNEUROSCI.1065-09.2009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pooler AM, Phillips EC, Lau DH, Noble W, Hanger DP (2013) Physiological release of endogenous tau is stimulated by neuronal activity. EMBO Rep 14(4):389–394. doi:10.1038/embor.2013.15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Prescott SA (1998) Interactions between depression and facilitation within neural networks: updating the dual-process theory of plasticity. Learn Mem 5(6):446–466

    CAS  PubMed  Google Scholar 

  • Quintanilla RA, Matthews-Roberson TA, Dolan PJ, Johnson GV (2009) Caspase-cleaved tau expression induces mitochondrial dysfunction in immortalized cortical neurons: implications for the pathogenesis of Alzheimer disease. J Biol Chem 284(28):18754–18766. doi:10.1074/jbc.M808908200

    Article  CAS  PubMed  Google Scholar 

  • Rocher AB, Crimins JL, Amatrudo JM, Kinson MS, Todd-Brown MA, Lewis J, Luebke JI (2010) Structural and functional changes in tau mutant mice neurons are not linked to the presence of NFTs. Exp Neurol 223(2):385–393. doi:10.1016/j.expneurol.2009.07.029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sakaba T, Neher E (2001) Quantitative relationship between transmitter release and calcium current at the calyx of held synapse. J Neurosci 21(2):462–476. doi:21/2/462

    CAS  PubMed  Google Scholar 

  • Santacruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M, Guimaraes A, DeTure M, Ramsden M, McGowan E, Forster C, Yue M, Orne J, Janus C, Mariash A, Kuskowski M, Hyman B, Hutton M, Ashe KH (2005) Tau suppression in a neurodegenerative mouse model improves memory function. Science 309(5733):476–481. doi:10.1126/science.1113694

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stevens CF, Tsujimoto T (1995) Estimates for the pool size of releasable quanta at a single central synapse and for the time required to refill the pool. Proc Natl Acad Sci USA 92(3):846–849

    Article  CAS  PubMed  Google Scholar 

  • Stevens CF, Wesseling JF (1998) Activity-dependent modulation of the rate at which synaptic vesicles become available to undergo exocytosis. Neuron 21(2):415–424 S0896-6273(00)80550-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow RH, Burns JM, Khan SM (2010) The Alzheimer’s disease mitochondrial cascade hypothesis. J Alzheimers Dis 20(Suppl 2):S265–S279. doi:10.3233/JAD-2010-100339

    PubMed  Google Scholar 

  • Szumlinski KK, Toda S, Middaugh LD, Worley PF, Kalivas PW (2003) Evidence for a relationship between Group 1 mGluR hypofunction and increased cocaine and ethanol sensitivity in Homer2 null mutant mice. Ann N Y Acad Sci 1003:468–471

    Article  PubMed  Google Scholar 

  • Tagawa Y, Kanold PO, Majdan M, Shatz CJ (2005) Multiple periods of functional ocular dominance plasticity in mouse visual cortex. Nat Neurosci 8(3):380–388. doi:10.1038/nn1410

    Article  CAS  PubMed  Google Scholar 

  • Thomson AM (2000) Facilitation, augmentation and potentiation at central synapses. Trends Neurosci 23(7):305–312 S0166-2236(00)01580-0 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Van Hoesen GW, Pandya DN, Butters N (1972) Cortical afferents to the entorhinal cortex of the Rhesus monkey. Science 175(4029):1471–1473

    Article  PubMed  Google Scholar 

  • Wang LY, Kaczmarek LK (1998) High-frequency firing helps replenish the readily releasable pool of synaptic vesicles. Nature 394(6691):384–388. doi:10.1038/28645

    Article  CAS  PubMed  Google Scholar 

  • Wang YP, Biernat J, Pickhardt M, Mandelkow E, Mandelkow EM (2007) Stepwise proteolysis liberates tau fragments that nucleate the Alzheimer-like aggregation of full-length tau in a neuronal cell model. Proc Natl Acad Sci USA 104(24):10252–10257. doi:10.1073/pnas.0703676104

    Article  CAS  PubMed  Google Scholar 

  • Weaver CL, Espinoza M, Kress Y, Davies P (2000) Conformational change as one of the earliest alterations of tau in Alzheimer’s disease. Neurobiol Aging 21(5):719–727 S0197-4580(00)00157-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Wilcox KS, Dichter MA (1994) Paired pulse depression in cultured hippocampal neurons is due to a presynaptic mechanism independent of GABAB autoreceptor activation. J Neurosci 14(3 Pt 2):1775–1788

    CAS  PubMed  Google Scholar 

  • Xiong ZQ, Stringer JL (1997) Effects of felbamate, gabapentin and lamotrigine on seizure parameters and excitability in the rat hippocampus. Epilepsy Res 27(3):187–194 S0920-1211(97)00022-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Xu J, He L, Wu LG (2007) Role of Ca(2+) channels in short-term synaptic plasticity. Curr Opin Neurobiol 17(3):352–359. doi:10.1016/j.conb.2007.04.005

    Article  CAS  PubMed  Google Scholar 

  • Yamada K, Cirrito JR, Stewart FR, Jiang H, Finn MB, Holmes BB, Binder LI, Mandelkow EM, Diamond MI, Lee VM, Holtzman DM (2011) In vivo microdialysis reveals age-dependent decrease of brain interstitial fluid tau levels in P301S human tau transgenic mice. J Neurosci 31(37):13110–13117. doi:10.1523/JNEUROSCI.2569-11.2011

    Article  CAS  PubMed  Google Scholar 

  • Yasuda M, Mayford MR (2006) CaMKII activation in the entorhinal cortex disrupts previously encoded spatial memory. Neuron 50(2):309–318. doi:10.1016/j.neuron.2006.03.035

    Article  CAS  PubMed  Google Scholar 

  • Zempel H, Thies E, Mandelkow E, Mandelkow EM (2010) Abeta oligomers cause localized Ca(2+) elevation, missorting of endogenous Tau into dendrites, Tau phosphorylation, and destruction of microtubules and spines. J Neurosci 30(36):11938–11950. doi:10.1523/JNEUROSCI.2357-10.2010

    Article  CAS  PubMed  Google Scholar