A poroelastic model valid in large strains with applications to perfusion in cardiac modeling - Computational Mechanics
- ️Vignon-Clementel, I. E.
- ️Thu Dec 10 2009
Spaan J, Kolyva C, van den Wijngaard J, ter Wee R, van Horssen P, Piek J, Siebes M (2008) Coronary structure and perfusion in health and disease. Phil Trans R Soc A 366(1878): 3137–3153
Horssen P, Wijngaard JPHM, Siebes M, Spaan JAE (2009) Improved regional myocardial perfusion measurement by means of an imaging cryomicrotome. In: 4th European conference of the international federation for medical and biological engineering. Springer, New York, pp 771–774
Westerhof N, Boer C, Lamberts RR, Sipkema P (2006) Cross-talk between cardiac muscle and coronary vasculature. Physiol Rev 86(4): 1263–1308
Smith N, Kassab G (2001) Analysis of coronary blood flow interaction with myocardial mechanics based on anatomical models. Phil Trans R Soc Lond A 359: 1251–1262
Smith N (2004) A computational study of the interaction between coronary blood flow and myocardial mechanics. Physiol Meas 25(4): 863–877
Terzaghi K (1943) Theoretical soil mechanics. Wiley, New York
Biot MA (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid. II Higher frequency range. J Acoust Soc Am 28: 179–191
Biot MA (1972) Theory of finite deformations of porous solids. Indiana Univ Math J 21: 597–620
May-Newman K, McCulloch AD (1998) Homogenization modeling for the mechanics of perfused myocardium. Prog Biophys Mol Biol 69: 463–481
Almeida E, Spilker R (1998) Finite element formulations for hyperelastic transversely isotropic biphasic soft tissues. Comput Methods Appl Mech Eng 151(3–4): 513–538
Yang Z, Smolinski P (2006) Dynamic finite element modeling of poroviscoelastic soft tissue. Comput Methods Biomech Biomed Eng 9(1): 7–16
Borja R (2006) On the mechanical energy and effective stress in saturated and unsaturated porous continua. Int J Solids Struct 43(6): 1764–1786
Badia S, Quaini A, Quarteroni A (2009) Coupling Biot and Navier–Stokes equations for modelling fluid–poroelastic media interaction. J Comput Phys (to appear)
Koshiba N, Ando J, Chen X, Hisada T (2007) Multiphysics simulation of blood flow and LDL transport in a porohyperelastic arterial wall model. J Biomech Eng 129: 374
Calo V, Brasher N, Bazilevs Y, Hughes T (2008) Multiphysics model for blood flow and drug transport with application to patient-specific coronary artery flow. Comput Mech 43(1): 161–177
Feenstra P, Taylor C (2009) Drug transport in artery walls: a sequential porohyperelastic-transport approach. Comput Methods Biomech Biomed Eng 12(3): 263–276
Huyghe JM, van Campen DH (1991) Finite deformation theory of hierarchically arranged porous solids: I. Balance of mass and momentum. Int J Eng Sci 33(13): 1861–1871
Huyghe JM, van Campen DH (1991) Finite deformation theory of hierarchically arranged porous solids: II. Constitutive behaviour. Int J Eng Sci 33(13): 1861–1871
Cimrman R, Rohan E (2003) Modelling heart tissue using a composite muscle model with blood perfusion. In: Bathe KJ (ed) Computational fluid and solid mechanics, 2nd MIT conference, pp 1642–1646
Vankan W, Huyghe J, Janssen J, Huson A (1997) A finite element mixture model for hierarchical porous media. Int J Numer Methods Eng 40: 193–210
Coussy O (1995) Mechanics of porous continua. Wiley, New York
de Buhan P, Chateau X, Dormieux L (1998) The constitutive equations of finite-strain poroelasticity in the light of a micro-macro approach. Eur J Mech A/Solids 17(6): 909–922
Ciarlet PG, Geymonat G (1982) Sur les lois de comportement en élasticité non linéaire. CRAS Série II 295: 423–426
Sainte-Marie J, Chapelle D, Cimrman R, Sorine M (2006) Modeling and estimation of the cardiac electromechanical activity. Comput Struct 84: 1743–1759
Brezzi F, Fortin M (1991) Mixed and hybrid finite element method. Springer, New York
Irons B, Tuck R (1969) A version of the Aitken accelerator for computer implementation. Int J Numer Methods Eng 1: 275–277
Bestel J, Clément F, Sorine M (2001) A biomechanical model of muscle contraction. In: Niessen WJ, Viergever MA (eds) Lectures Notes in Computer Science, vol 2208. Springer-Verlag, New York, pp 1159–1161
Krejčí P, Sainte-Marie J, Sorine M, Urquiza J (2005) Solutions to muscle fiber equations and their long time behaviour. Nonlinear Anal: Real World Anal 7(4): 535–558
Chapelle D, Le Tallec P, Moireau P (2009) Mechanical modeling of the heart contraction. (in preparation)
Chapelle D, Fernánde M, Gerbeau J-F, Moireau P, Sainte- Marie J, Zemzemi N (2009) Numerical simulation of the electromechanical activity of the heart. In: FIMH, vol 5528 of Lecture Notes in Computer Science, pp 357–365
Boulakia M, Cazeau S, Fernández MA, Gerbeau J-F, Zemzemi N (2009) Mathematical modeling of electrocardiograms: a numerical study. Research Report RR-6977, INRIA. URL http://hal.inria.fr/inria-00400490/en/
Zinemanas D, Beyar R, Sideman S (1995) An integrated model of LV muscle mechanics, coronary flow, and fluid and mass transport. Am J Physiol Heart Circ Physiol 268(2): H633–H645
Kassab GS, Le KN, Fung Y-CB (1999) A hemodynamic analysis of coronary capillary blood flow based on anatomic and distensibility data. Am J Physiol Heart Circ Physiol 277(6): H2158–H2166
Fronek K, Zweifach B (1975) Microvascular pressure distribution in skeletal muscle and the effect of vasodilation. Am J Physiol 228(3): 791–796
Berne R, Levy M (2001) Cardiovascular physiology. St Louis, Mosby
Gonzalez F, Bassingthwaighte JB (1990) Heterogeneities in regional volumes of distribution and flows in rabbit heart. Am J Physiol Heart Circ Physiol 258(4): H1012–H1024
May-Newman K, Chen C, Oka R, Haslim R, DeMaria A (2001) Evaluation of myocardial perfusion using three-dimensional myocardial contrast echocardiography. In: Nuclear science symposium conference record, vol 3. IEEE, pp 1691–1694
Ghista D, Ng E (2007) Cardiac perfusion and pumping engineering. World Scientific, Singapore
Huyghe JM, Arts T, van Campen DH, Reneman RS (1992) Porous medium finite element model of the beating left ventricle. Am J Physiol Heart Circ Physiol 262(4): H1256–H1267
Ashikaga H, Coppola BA, Yamazaki K, Villarreal FJ, Omens JH, Covell JW (2008) Changes in regional myocardial volume during the cardiac cycle: implications for transmural blood flow and cardiac structure. Am J Physiol Heart Circ Physiol 295(2): H610–H618
Goto M, Flynn AE, Doucette JW, Jansen CM, Stork MM, Coggins DL, Muehrcke DD, Husseini WK, Hoffman JI (1991) Cardiac contraction affects deep myocardial vessels predominantly. Am J Physiol Heart Circ Physiol 261(5): H1417–H1429
Gregg D, Green H (1940) Registration and interpretation of normal phasic inflow into a left coronary artery by an improved differential manometric method. Am J Physiol 130: 114–125
Nichols W, O’Rourke M (2005) McDonald’s blood flow in arteries. Hodder Arnold