link.springer.com

Comparative cytogenetics of the ACPT clade (Anacampserotaceae, Cactaceae, Portulacaceae, and Talinaceae): a very diverse group of the suborder Cactineae, Caryophyllales - Protoplasma

  • ️De Carvalho, Reginaldo
  • ️Thu Jan 03 2019
  • Akaike HA (1974) New look at the statistical model identification. IEEE Trans Autom Control Boston 19(6):716–723

    Article  Google Scholar 

  • Applequist WL, Wallace RS (2001) Phylogeny of the Portulacaceous cohort based on ndhF sequence data. Syst Bot 26(2):406–419

    Google Scholar 

  • Applequist WL, Wagner WL, Zimmer EA, Nepokroeff M (2006) Molecular evidence resolving the systematic position of Hectorella (Portulacaceae). Syst Bot 31:310–319

    Article  Google Scholar 

  • Barthlott W, Hunt DR (1993) Cactaceae. In The families and genera of vascular plants 2. In: Kubitzki K (ed). Available in: https://link.springer.com/content/pdf/bfm%3A978-3-662-02899-5%2F1.pdf

  • Bennett MD (1998) Plant genome values: how much do we know? Proc Natl Acad Sci U S A 95:2011–2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernardello LM (1989) The chromosomes of Grahamia (Portulacaceae). Plant Syst Evol 163:127–131

    Article  Google Scholar 

  • Bouharmont J (1965) Note sur la cytologie de quelques espéces de Portulaca. Bull Soc R Bot Belg 98:175–188

    Google Scholar 

  • Carolin R (1987) A review of the family Portulacaceae. Aust J Bot 35:383–412

    Article  Google Scholar 

  • Castro JP, Souza LGR, Alves LF, Silva AEB, Guerra M, Felix LP (2013) Cactaceae In: K. Marhold (ed) IAPT/IOPB chromosome data 15. Taxon 62:1073–1083

  • Castro JP, Moraes AP, Chase MW, Souza G, Batista FRC, Felix PF (in press) Evolution of chromosome number and markers in Cactaceae with special emphasis on subfamily Cactoideae. submitted to: American Journal of Botany

  • CCDB- Chromosome Counts Database. Available at: http://ccdb.tau.ac.il/. Accessed 20 Dec 2017

  • Chacón J, Cusimano N, Renner SS (2014) The evolution of Colchicaceae, with a focus on chromosome numbers. Syst Bot 39(2):415–427

    Article  Google Scholar 

  • Christenhusz MMJM, Vorontsova MS, Fay MF, Chase MMW (2015) Results from an online survey of family delimitation in angiosperms and ferns: recommendations to the Angiosperm Phylogeny Group for thorny problems in plant classification. Bot J Linn Soc 178:501–528. https://doi.org/10.1111/boj.12285

    Article  Google Scholar 

  • Cooper DC (1935) Microsporogenesis and the development of the male gametophyte in Portulacaoleracea. Am J Bot 22:453–457

    Article  Google Scholar 

  • Cusimano N, Sousa A, Renner SS (2012) Maximum likelihood inference implies a high, not a low, ancestral haploid chromosome number in Araceae, with a critique of the bias introduced by “x”. Ann Bot 109(4):681–692

    Article  PubMed  Google Scholar 

  • Dannemann A (2000) Der Einfluss von Fragmentierung und Populationsgrösse auf die genetische Variation auf Fitness von seltenen Pflanzenarten am Beispiel von Biscutella laevigata (Brassicaceae). Dissertationes Botanicae 330:1–151

  • Dawe RK (1998) Meiotic chromosome organization and segregation in plants. Annu Rev Plant Physiol Plant Mol Biol 49:371–395

    Article  CAS  PubMed  Google Scholar 

  • Dynesius M, Jansson R (2000) Evolutionary consequences of changes in species geographical distributions driven by Milankovitch climate oscillations. Proc Natl Acad Sci U S A 97:9115–9120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards EJ, Nyffeler R, Donoghue MJ (2005) Basal cactus phylogeny: implications of Pereskia (Cactaceae) paraphyly for the transition to the cactus life form. Am J Bot 92:1177–1188

    Article  PubMed  Google Scholar 

  • Eggli U (1997) A synopsis of woody Portulacaceae in northern Madagascar. Adansonia 17:149–158

    Google Scholar 

  • Eggli UE, Ford-Werntz D (2002) Illustrated handbook of succulent plants—Dicotyledons. Portulacaceae. Springer, New York, pp 370–432

    Google Scholar 

  • Escudero M, Martín-Bravo S, Mayrose I, Fernández-Mazuecos M, Fiz-Palacios O, Hipp AL, Pimentel M, Jiménez-Mejías P, Valcárcel V, Vargas P, Luceño M (2014) Karyotypic changes through dysploidy persist longer over evolutionary time than polyploid changes. PLoS One 9(1)

  • Gerbaulet M (1992) Die Gattung Anacampseros L. (Portulacaceae). I. Untersuchungen zur Systematik. Botanische Jahrbücher für Systematik. Pflanzengeschichte und Pflanzengeographie 113:477–564

    Google Scholar 

  • Gibson AC, Nobel PS (1986) The cactus primer. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Glick L, Mayrose I (2014) ChromEvol: assessing the pattern of chromosome number evolution and the inference of polyploidy along a phylogeny. Mol Biol Evol 31(7):1914–1922

    Article  CAS  PubMed  Google Scholar 

  • Guerra M (2000) Chromosome number variation and evolution in monocots. In: Wilson KL, Morrison DA (eds) Monocots—systematics and evolution—vol 1—Proceedings of the Second International Conference on the Comparative Biology of the Monocots, pp 125–134

  • Guerra M (2008) Chromosome numbers in plant cytotaxonomy: concepts and implications. Cytogenet Genome Res 120:339–350

    Article  CAS  PubMed  Google Scholar 

  • Guerra M (2012) Cytotaxonomy: the end of childhood. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology. Official Journal of the Societa Botanica Italiana146(3):703–710. Available in: https://www.tandfonline.com/doi/abs/10.1080/11263504.2012.717973

  • Hernández-Ledesma P et al (2015) A taxonomic backbone for the global synthesis of species diversity in the angiosperm order Caryophyllales. Botanic Garden and Botanical Museum Berlin (BGBM). Willdenowia 45(3):281–383

    Article  Google Scholar 

  • Hershkovitz MA (1993) Revised circumscriptions and subgeneric taxonomies of Calandrinia and Montiopsis (Portulacaceae) with notes on phylogeny of the portulacaceous alliance. Ann Mo Bot Gard 80:333–365

    Article  Google Scholar 

  • Hershkovitz MA, Zimmer EA (1997) On the evolutionary origins of the cacti. Taxon 46:217–232

    Article  Google Scholar 

  • Hunziker JH, Pozner R, Escobar A (2000) Chromosome number in Halophytum ameghinoi (Halophytaceae). Plant Syst Evol 221:125–127

    Article  Google Scholar 

  • Jones SB (1977) Vernonieae—systematic review. In: Heywood VH, Harborne JB, Turner BL (eds) The biology and chemistry of the Compositae, vol 1. Academic, London

    Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim I, Carr GD (1990) Cytogenetics and hybridization of Portulaca in Hawaii. Syst Bot 15:370–377

    Article  Google Scholar 

  • Langlet O (1927) Beitra ¨ge zur Zytologie der Ranunculaceen. Sven Bot Tidskr 21:1–17

    Google Scholar 

  • Las Peñas ML, Bernardello G, Kiesling R (2008) Karyotypes and fluorescent chromosome banding in Pyrrhocactus (Cactaceae). Plant Syst. Evol. 272(1–4):211–222

    Article  Google Scholar 

  • Las Peñas ML, Urdampilleta JD, Bernardello G, Forni-Martins ER (2009) Karyotypes, heterochromatin, and physical mapping of 18S-26S rDNA in Cactaceae. Cytogenet Genome 124:72–80

    Article  CAS  Google Scholar 

  • Las Peñas ML, Kiesling R, Bernardello G (2011) Karyotype, heterochromatin, and physical mapping of 5S and 18- 5.8-26S rDNA genes in Setiechinopsis (Cactaceae), an Argentine endemic genus. Haseltonia 16(1):83–90

    Article  Google Scholar 

  • Las Peñas ML, Urdampilleta JD, López-Carro B, Santiñaque F, Kiesling R, Bernardello G (2014) Classical and molecular cytogenetics and DNA content in Maihuenia and Pereskia (Cactaceae). Plant Syst. Evol. 300(3):549–558

    Article  Google Scholar 

  • Las Peñas ML, Santiñaque F, López-Carro B, Stiefkens L (2016) Estudios citogenéticos y de contenido de ADN en Brasiliopuntia schulzii (Cactaceae) Cytogenetic studies and DNA content in Brasiliopuntia schulzii (Cactaceae). Gayana Bot 73(2):414–420

    Article  Google Scholar 

  • Las Peñas ML, Oakley L, Moreno NC, Bernardello G (2017) Taxonomic and cytogenetic studies in Opuntia ser. Armatae (Cactaceae). Botany 95:101–120

    Article  CAS  Google Scholar 

  • Levin DA, Wilson AC (1976) Rates of evolution in seed plants: net increase in diversity of chromosome numbers and species numbers through time. Proc Natl Acad Sci U S A 73:2086–2090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lysák MA, Schubert I (2013) Mechanisms of chromosome rearrangements. In Greilhuber J, Dolezel J, Wendel JF (eds) Plant genome diversity: physical structure, Behaviour and Evolution of Plant Genomes 2 pp 137–147

  • Maddison WP, Maddison MDR (2014) Mesquite: a modular system for evolutionary analysis. Version 3.01. Available at: http://mesquiteproject.org. Acessad 1 Julho 2016

  • Majure LC, Judd WS, Soltis PS, Soltis DE (2012) Cytogeography of the Humifusa clade of Opuntia s.s. Mill. 1754 (Cactaceae, Opuntioideae, Opuntieae): correlations with pleistocene refugia and morphological traits in a polyploid complex. Comp Cytogenet 6:53–77

    Article  PubMed  PubMed Central  Google Scholar 

  • Manton I (1937) The problem of Biscutella laevigata L. II. The evidence from meiosis. Ann Bot 51:439–465

    Article  Google Scholar 

  • Marinho RC, Mendes-Rodrigues C, Bonetti AM, Oliveira PE (2014) Pollen and stomata morphometrics and polyploidy in Eriotheca (Malvaceae-Bombacoideae). Plant Biol 16:508–511

    Article  CAS  PubMed  Google Scholar 

  • Matthew JF, Ketron DW, Zane SF (1994) The seed surface morphology and cytology of six species of Portulaca (Portulacaceae). Castanea 59(4):331–337

    Google Scholar 

  • Mauseth JD (1990) Continental drift, climate, and the evolution of cacti. University of Texas, Austin, TX. Cactus and Succulent Journal 62:302–308

  • Mayrose I, Barker MS, Otto SP (2010) Probabilistic models of chromosome number evolution and the inference of polyploidy. Syst Biol 59:132–144

    Article  PubMed  Google Scholar 

  • Mayrose I, Zhan SH, Rothfels CJ, Magnuson-Ford K, Barker MS, Rieseberg LH, Otto SP (2011) Recently formed polyploid plants diversify at lower rates. Science 333:1257

    Article  CAS  PubMed  Google Scholar 

  • Moreno NC, Amarilla LD, Las Peñas ML, Bernardello G (2015) Molecular cytogenetic insights into the evolution of the epiphytic genus Lepismium (Cactaceae) and related genera. Bot J Linn Soc 177:263–277

    Article  Google Scholar 

  • Nyffeler R (2007) The closest relatives of cacti: insights from phylogenetic analyses of chloroplast and mitochondrial sequences with special emphasis on relationships in the tribe Anacampseroteae. Am J Bot 94:89–101

    Article  CAS  PubMed  Google Scholar 

  • Nyffeler R, Eggli U (2010) Disintegrating portulacaceae: a new familial classification of the suborder portulacineae (Caryophyllales) based on molecular and morphological data. Taxon 59(1):227–240

    Article  Google Scholar 

  • Nyffeler R, Eggli U, Ogburn M, Edwards E (2008) Variations on a theme: repeated evolution of succulent life forms in the Portulacineae (Caryophyllales). Haseltonia 14:26–36

    Article  Google Scholar 

  • Ocampo G, Columbus JT (2010) Molecular phylogenetics of suborder Cactineae (Caryophyllales), including insights into photosyntetic diversification and historical biogeography. Am J Bot 97:1827–1847

    Article  CAS  PubMed  Google Scholar 

  • Ocampo G, Columbus JT (2012) Molecular phylogenetics, historical biogeography, and chromosome number evolution of Portulaca (Portulacaceae). Mol Phylogenet Evol 63(1):97–112

    Article  PubMed  Google Scholar 

  • Ogburn RM, Edwards ETJ (2009) Anatomical variation in Cactaceae and relatives: trait lability and evolutionary innovation. Am J Bot 96:391–408

    Article  PubMed  Google Scholar 

  • Olowokudejo JD. (1980) Systematic studies in the genus Biscutella L. (Cruciferae): 424 p. University of Reading (unpublished Ph. D. thesis)

  • Pellicer J, Kelly LJ, Leitch IJ, Zomlefer WB, Fay MF (2014) A universe of dwarfs and giants: genome size and chromosome evolution in the monocot family Melanthiaceae. New Phytol 201(4):1484–1497

    Article  CAS  PubMed  Google Scholar 

  • Peruzzi L (2013) x’ is not a bias, but a number with real biological significance. Journal Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, Official Journal of the Societa Botanica Italiana 147:1238–1241

    Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  CAS  PubMed  Google Scholar 

  • Rambaut A (2009) FigTree v1. 3.1: tree figure drawing tool. http://tree.bio.ed.ac.uk/software/figtree. Accessed 15, 2016

  • Ribeiro T, Buddenhagen CE, Thomas WW, Souza G, Pedrosa-Harand A (2017) Are holocentrics doomed to change? Limited chromosome number variation in Rhynchospora Vahl (Cyperaceae). Protoplasma 255(1):263–272

    Article  CAS  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Sharma AK, Bhattacharyya NK (1956) Cytogenetics of some members of Portulacaceae and related families, Caryologia. International Journal of Cytology, Cytosystematics and Cytogenetics 8(2):257–274

    Google Scholar 

  • Soltis PS, Soltis DE (2000) The role of genetic and genomic attributes in the success of polyploids. Proc Natl Acad Sci U S A 97(13):7051–7057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soltis DE, Visger CJ, Soltis PS (2014) The polyploidy revolution then... and now: Stebbins revisited. Am J Bot 101(7):1057–1078

    Article  PubMed  Google Scholar 

  • Steiner E (1944) Cytogenetic studies on Talinum and Portulaca. Bot Gaz 105:374–379

    Article  Google Scholar 

  • Stevens PF (2001) Angiosperm phylogeny website, version 12. Acessado em: julho de 2016. Disponível em: http://www.mobot.org/MOBOT/research/APweb/

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner BL (1994) Chromosome numbers and their phyletic interpretation. In: Behnke HD, Mabry TJ (eds) Caryophyllales: evolution and systematics. Springer-Verlag, Berlin, pp 27–43

    Chapter  Google Scholar