Assessment of sudomotor function - Clinical Autonomic Research
- ️Siepmann, Timo
- ️Tue May 08 2018
Abstract
Purpose
To review the currently available literature on clinical autonomic tests of sudomotor function.
Methods
We searched PubMED/MEDLINE for articles on technical principles and clinical applications of sudomotor tests with a focus on their drawbacks and perspectives in order to provide a narrative review.
Results
The quantitative sudomotor axon reflex sweat test (QSART) is the most widely used test of sudomotor function. The technique captures pathology with low intra- and inter-subject variability but is limited by technical demands. The thermoregulatory sweat test comprises topographic sweat pattern analysis of the ventral skin surface and allows differentiating preganglionic from postganglionic sudomotor damage when combined with a small fiber test such as QSART. The sympathetic skin response also belongs to the more established techniques and is used in lie detection systems due to its high sensitivity for sudomotor responses to emotional stimuli. However, its clinical utility is limited by high variability of measurements, both within and between subjects. Newer and, therefore, less widely established techniques include silicone impressions, quantitative direct and indirect axon reflex testing, sensitive sweat test, and measurement of electrochemical skin conductance. The spoon test does not allow a quantitative assessment of the sweat response but can be used as bedside-screening tool of sudomotor dysfunction.
Conclusion
While new autonomic sudomotor function testings have been developed and studied over the past decades, the most were well-studied and established techniques QSART and TST remain the gold standard of sudomotor assessment. Combining these techniques allows for sophisticated analysis of neurally mediated sudomotor impairment. However, newer techniques display potential to complement gold standard techniques to further improve their precision and diagnostic value.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price excludes VAT (USA)
Tax calculation will be finalised during checkout.
Instant access to the full article PDF.
Similar content being viewed by others
References
Illigens BMW, Gibbons CH (2008) Sweat testing to evaluate autonomic function. Clin Auton Res 19(2):79. https://doi.org/10.1007/s10286-008-0506-8
Freeman R (2005) Autonomic peripheral neuropathy. Lancet 365(9466):1259–1270. https://doi.org/10.1016/S0140-6736(05)74815-7
Low VA, Sandroni P, Fealey RD, Low PA (2006) Detection of small-fiber neuropathy by sudomotor testing. Muscle Nerve 34(1):57–61. https://doi.org/10.1002/mus.20551
Hoeldtke RD, Bryner KD, Horvath GG, Phares RW, Broy LF, Hobbs GR (2001) Redistribution of sudomotor responses is an early sign of sympathetic dysfunction in type 1 diabetes. Diabetes 50(2):436–443
Folk GE Jr, Semken HA Jr (1991) The evolution of sweat glands. Int J Biometeorol 35(3):180–186
Zawadzka M, Szmuda M, Mazurkiewicz-Beldzinska M (2017) Thermoregulation disorders of central origin—how to diagnose and treat. Anaesthesiol Intensive Ther 49(3):227–234. https://doi.org/10.5603/ait.2017.0042
Sato K, Kang WH, Saga K, Sato KT (1989) Biology of sweat glands and their disorders. I. Normal sweat gland function. J Am Acad Dermatol 20(4):537–563. https://doi.org/10.1016/S0190-9622(89)70063-3
Machado-Moreira CA, Smith FM, van den Heuvel AMJ, Mekjavic IB, Taylor NAS (2008) Sweat secretion from the torso during passively-induced and exercise-related hyperthermia. Eur J Appl Physiol 104(2):265–270. https://doi.org/10.1007/s00421-007-0646-x
Guttmann L (1947) The management of the quinizarin sweat test. Postgrad Med J 23(262):353–366
Low PA (2004) Evaluation of sudomotor function. Clin Neurophysiol 115(7):1506–1513. https://doi.org/10.1016/j.clinph.2004.01.023
Morrison SF, Nakamura K (2011) Central neural pathways for thermoregulation. Front Biosci 16:74–104
Low PA, Tomalia VA, Park K-J (2013) Autonomic function tests: some clinical applications. J Clin Neurol 9(1):1–8
Low PA, Caskey PE, Tuck RR, Fealey RD, Dyck PJ (1983) Quantitative sudomotor axon reflex test in normal and neuropathic subjects. Ann Neurol 14(5):573–580. https://doi.org/10.1002/ana.410140513
Gibbons CH, Illigens BM, Centi J, Freeman R (2008) QDIRT: quantitative direct and indirect test of sudomotor function. Neurology 70(24):2299–2304. https://doi.org/10.1212/01.wnl.0000314646.49565.c0
Freeman R, Chapleau MW (2013) Testing the autonomic nervous system. Handb Clin Neurol 115:115–136. https://doi.org/10.1016/B978-0-444-52902-2.00007-2
Siepmann T, Illigens BM-W, Reichmann H, Ziemssen T (2014) Axon-reflex-basierte nervenmessverfahren in der diagnostik autonomer neuropathie. Der Nervenarzt 85(10):1309–1314. https://doi.org/10.1007/s00115-014-4120-9
Sletten DM, Kimpinski K, Weigand SD, Low PA (2010) Comparison of a gel versus solution-based vehicle for the delivery of acetylcholine in QSART. Auton Neurosci 158(1):123–126. https://doi.org/10.1016/j.autneu.2010.05.005
Kennedy WR (2002) Usefulness of the silicon impression mold technique to evaluate sweating. Clin Auton Res 12(1):9–10
Siepmann T, Pinter A, Buchmann SJ, Stibal L, Arndt M, Kubasch AS, Kubasch ML, Penzlin AI, Frenz E, Zago W, Horvath T, Szatmari S Jr, Bereczki D, Takats A, Ziemssen T, Lipp A, Freeman R, Reichmann H, Barlinn K, Illigens BM (2017) Cutaneous autonomic pilomotor testing to unveil the role of neuropathy progression in early Parkinson’s disease (CAPTURE PD): protocol for a multicenter study. Front Neurol 8:212. https://doi.org/10.3389/fneur.2017.00212
Vinik AI, Nevoret ML, Casellini C (2015) The new age of sudomotor function testing: a sensitive and specific biomarker for diagnosis, estimation of severity, monitoring progression, and regression in response to intervention. Front Endocrinol 6:94. https://doi.org/10.3389/fendo.2015.00094
Mao F, Liu S, Qiao X, Zheng H, Xiong Q, Wen J, Zhang S, Zhang Z, Ye H, Shi H, Lu B, Li Y (2017) SUDOSCAN, an effective tool for screening chronic kidney disease in patients with type 2 diabetes. Exp Ther Med 14(2):1343–1350. https://doi.org/10.3892/etm.2017.4689
Dekker JM, Schouten EG, Klootwijk P, Pool J, Kromhout D (1994) Association between QT interval and coronary heart disease in middle-aged and elderly men. The Zutphen study. Circulation 90(2):779
Mayaudon H, Miloche PO, Bauduceau B (2010) A new simple method for assessing sudomotor function: relevance in type 2 diabetes. Diabetes Metab 36(6, Part 1):450–454. https://doi.org/10.1016/j.diabet.2010.05.004
Novak P (2017) Electrochemical skin conductance: a systematic review. Clin Auton Res. https://doi.org/10.1007/s10286-017-0467-x
Loavenbruck AJ, Hodges JS, Provitera V, Nolano M, Wendelshafer-Crabb G, Kennedy WR (2017) A device to measure secretion of individual sweat glands for diagnosis of peripheral neuropathy. J Peripher Nerv Syst 22(2):139–148. https://doi.org/10.1111/jns.12212
Vilches JJ, Wynick D, Kofler B, Lang R, Navarro X (2012) Sudomotor function and sweat gland innervation in galanin knockout mice. Neuropeptides 46(4):151–155. https://doi.org/10.1016/j.npep.2012.05.002
Shahani BT, Halperin JJ, Boulu P, Cohen J (1984) Sympathetic skin response—a method of assessing unmyelinated axon dysfunction in peripheral neuropathies. J Neurol Neurosurg Psychiatry 47(5):536
Vetrugno R, Liguori R, Cortelli P, Montagna P (2003) Sympathetic skin response: basic mechanisms and clinical applications. Clin Auton Res 13(4):256–270. https://doi.org/10.1007/s10286-003-0107-5
Gibbons C, Freeman R (2004) The evaluation of small fiber function-autonomic and quantitative sensory testing. Neurol clin 22(3):683–702. https://doi.org/10.1016/j.ncl.2004.03.002 vii
Emad R, Zafarghasempour M, Roshanzamir S (2013) Sympathetic skin response in incomplete spinal cord injury with urinary incontinence. Ann Indian Acad Neurol 16(2):234–238. https://doi.org/10.4103/0972-2327.112479
Meijer EH, Smulders FTY, Johnston JE, Merckelbach HLGJ (2007) Combining skin conductance and forced choice in the detection of concealed information. Psychophysiology 44(5):814–822. https://doi.org/10.1111/j.1469-8986.2007.00543.x
van Dooren M, de Vries JJ, Janssen JH (2012) Emotional sweating across the body: comparing 16 different skin conductance measurement locations. Physiol Behav 106(2):298–304. https://doi.org/10.1016/j.physbeh.2012.01.020
Bors E (1964) Simple methods of examination in paraplegia: i. The spoon test. Paraplegia 2:17–19. https://doi.org/10.1038/sc.1964.4
Tsementzis SA, Hitchcock ER (1985) The spoon test: a simple bedside test for assessing sudomotor autonomic failure. J Neurol Neurosurg Psychiatry 48(4):378
Khurana RK, Russell C (2017) The spoon test: a valid and reliable bedside test to assess sudomotor function. Clin Auton Res 27(2):91–95. https://doi.org/10.1007/s10286-017-0401-2
Acknowledgements
The authors express their sincere gratitude to and thank Professor Roy Freeman and Professor Christopher Gibbons for their mentorship and support.
Author information
Authors and Affiliations
Department of Neurology, Campus Virchow, Charite University Medicine Berlin, Berlin, Germany
Sylvia J. Buchmann
Department of Neurology, Bavaria Hospital Kreischa, Kreischa, Germany
Ana Isabel Penzlin
Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
Marie Luise Kubasch & Timo Siepmann
Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
Ben Min-Woo Illigens
Authors
- Sylvia J. Buchmann
You can also search for this author in PubMed Google Scholar
- Ana Isabel Penzlin
You can also search for this author in PubMed Google Scholar
- Marie Luise Kubasch
You can also search for this author in PubMed Google Scholar
- Ben Min-Woo Illigens
You can also search for this author in PubMed Google Scholar
- Timo Siepmann
You can also search for this author in PubMed Google Scholar
Contributions
SJB drafted the first version of the manuscript. AIP, MLK, BMW and TS have made substantial contributions to reviewing the manuscript for intellectual content, language and design. SJB, BMW and TS have made substantial contributions to drafting the figures displayed in this article.
Corresponding author
Correspondence to Timo Siepmann.
Ethics declarations
Conflict of interest
The authors have no financial conflicts of interests to report. Dr. Siepmann’s research is supported by grants from the Michael J. Fox Foundation, the German Parkinson’s Disease Association (DPG) and Prothena Biosciences. Dr. Illigens’ research is supported by grants from the Michael J. Fox Foundation.
Rights and permissions
About this article
Cite this article
Buchmann, S.J., Penzlin, A.I., Kubasch, M.L. et al. Assessment of sudomotor function. Clin Auton Res 29, 41–53 (2019). https://doi.org/10.1007/s10286-018-0530-2
Received: 07 January 2018
Accepted: 27 April 2018
Published: 08 May 2018
Issue Date: 11 February 2019
DOI: https://doi.org/10.1007/s10286-018-0530-2