link.springer.com

Molecular signatures for the Crenarchaeota and the Thaumarchaeota - Antonie van Leeuwenhoek

  • ️Shami, Ali
  • ️Sat Aug 14 2010
  • Anderson I, Rodriguez J, Susanti D et al (2008) Genome sequence of Thermofilum pendens reveals an exceptional loss of biosynthetic pathways without genome reduction. J Bacteriol 190:2957–2965

    Article  CAS  PubMed  Google Scholar 

  • Anderson IJ, Dharmarajan L, Rodriguez J et al (2009) The complete genome sequence of Staphylothermus marinus reveals differences in sulfur metabolism among heterotrophic Crenarchaeota. BMC Genomics 10:145

    Article  PubMed  Google Scholar 

  • Baldauf SL, Palmer JD (1993) Animals and fungi are each other’s closest relatives: congruent evidence from multiple proteins. Proc Natl Acad Sci USA 90:11558–11562

    Article  CAS  PubMed  Google Scholar 

  • Bapteste E, Philippe H (2002) The potential value of indels as phylogenetic markers: position of trichomonads as a case study. Mol Biol Evol 19:972–977

    CAS  PubMed  Google Scholar 

  • Bapteste E, Brochier C, Boucher Y (2005) Higher-level classification of the Archaea: evolution of methanogenesis and methanogens. Archaea 1:353–363

    Article  CAS  PubMed  Google Scholar 

  • Barns SM, Delwiche CF, Palmer JD, Pace NR (1996) Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc Natl Acad Sci USA 93:9188–9193

    Article  CAS  PubMed  Google Scholar 

  • Brochier C, Forterre P, Gribaldo S (2005a) An emerging phylogenetic core of Archaea: phylogenies of transcription and translation machineries converge following addition of new genome sequences. BMC Evol Biol 5:36

    Article  PubMed  Google Scholar 

  • Brochier C, Gribaldo S, Zivanovic Y, Confalonieri F, Forterre P (2005b) Nanoarchaea: representatives of a novel archaeal phylum or a fast-evolving euryarchaeal lineage related to Thermococcales? Genome Biol 6:R42

    Article  PubMed  Google Scholar 

  • Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008a) Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6:245–252

    Article  CAS  PubMed  Google Scholar 

  • Brochier-Armanet C, Gribaldo S, Forterre P (2008b) A DNA topoisomerase IB in Thaumarchaeota testifies for the presence of this enzyme in the last common ancestor of Archaea and Eucarya. Biol Direct 3:54

    Article  PubMed  Google Scholar 

  • Brockl G, Berchtold M, Behr M, Konig H (1992) Sequence of the 5-aminolevulinic acid dehydratase-encoding gene from the hyperthermophilic methanogen, Methanothermus sociabilis. Gene 119:151–152

    Article  CAS  PubMed  Google Scholar 

  • Burggraf S, Huber H, Stetter KO (1997) Reclassification of the crenarchaeal orders and families in accordance with 16S rRNA sequence data. Int J Syst Bacteriol 47:657–660

    Article  CAS  PubMed  Google Scholar 

  • Cacciapuoti G, Bertoldo C, Brio A, Zappia V, Porcelli M (2003) Purification and characterization of 5′-methylthioadenosine phosphorylase from the hyperthermophilic archaeon Pyrococcus furiosus: substrate specificity and primary structure analysis. Extremophiles 7:159–168

    CAS  PubMed  Google Scholar 

  • Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283–1287

    Article  CAS  PubMed  Google Scholar 

  • Daubin V, Gouy M, Perriere G (2002) A phylogenomic approach to bacterial phylogeny: evidence of a core of genes sharing a common history. Genome Res 12:1080–1090

    Article  CAS  PubMed  Google Scholar 

  • DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689

    Article  CAS  PubMed  Google Scholar 

  • DeLong EF, Pace NR (2001) Environmental diversity of bacteria and archaea. Syst Biol 50:470–478

    Article  CAS  PubMed  Google Scholar 

  • Delsuc F, Brinkmann H, Philippe H (2005) Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet 6:361–375

    Article  CAS  PubMed  Google Scholar 

  • Dobson CM, Wai T, Leclerc D et al (2002) Identification of the gene responsible for the cblA complementation group of vitamin B12-responsive methylmalonic acidemia based on analysis of prokaryotic gene arrangements. Proc Natl Acad Sci USA 99:15554–15559

    Article  CAS  PubMed  Google Scholar 

  • Doerks T, von Mering C, Bork P (2004) Functional clues for hypothetical proteins based on genomic context analysis in prokaryotes. Nucleic Acids Res 32:6321–6326

    Article  CAS  PubMed  Google Scholar 

  • Dorner E, Boll M (2002) Properties of 2-oxoglutarate:ferredoxin oxidoreductase from Thauera aromatica and its role in enzymatic reduction of the aromatic ring. J Bacteriol 184:3975–3983

    Article  CAS  PubMed  Google Scholar 

  • Dutilh BE, He Y, Hekkelman ML, Huynen MA (2008a) Signature, a web server for taxonomic characterization of sequence samples using signature genes. Nucleic Acids Res 36:W470–W474

    Article  CAS  PubMed  Google Scholar 

  • Dutilh BE, Snel B, Ettema TJ, Huynen MA (2008b) Signature genes as a phylogenomic tool. Mol Biol Evol 25:1659–1667

    Article  CAS  PubMed  Google Scholar 

  • Elkins JG, Podar M, Graham DE et al (2008) A korarchaeal genome reveals insights into the evolution of the Archaea. Proc Natl Acad Sci USA 105:8102–8107

    Article  CAS  PubMed  Google Scholar 

  • Fang G, Rocha E, Danchin A (2005) How essential are nonessential genes? Mol Biol Evol 22:2147–2156

    Article  CAS  PubMed  Google Scholar 

  • Fang G, Rocha EP, Danchin A (2008) Persistence drives gene clustering in bacterial genomes. BMC Genomics 9:4

    Article  PubMed  Google Scholar 

  • Felsenstein J (1996) Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. Methods Enzymol 266:418–427 (418–427)

    Article  CAS  PubMed  Google Scholar 

  • Fitz-Gibbon ST, Ladner H, Kim UJ, Stetter KO, Simon MI, Miller JH (2002) Genome sequence of the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. Proc Natl Acad Sci USA 99:984–989

    Article  CAS  PubMed  Google Scholar 

  • Fuhrman JA, McCallum K, Davis AA (1992) Novel major archaebacterial group from marine plankton. Nature 356:148–149

    Article  CAS  PubMed  Google Scholar 

  • Gao B, Gupta RS (2007) Phylogenomic analysis of proteins that are distinctive of Archaea and its main subgroups and the origin of methanogenesis. BMC Genomics 8:86

    Article  PubMed  Google Scholar 

  • Gao B, Parmanathan R, Gupta RS (2006) Signature proteins that are distinctive characteristics of Actinobacteria and their subgroups. Antonie van Leeuwenhoek 90:69–91

    Article  CAS  PubMed  Google Scholar 

  • Gao B, Sugiman-Marangos S, Junop MS, Gupta RS (2009) Structural and phylogenetic analysis of a conserved actinobacteria-specific protein (ASP1; SCO1997) from Streptomyces coelicolor. BMC Struct Biol 9:40

    Article  PubMed  Google Scholar 

  • Garrett RA, Klenk H-P (eds) (2006) Archaea: evolution, physiology and molecular biology. Blackwell Publishing, Oxford

    Google Scholar 

  • Garrity GM, Holt JG (2001) Phylum AI. Crenarchaeota phy. nov. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology volume 1: the Archaea and the deeply branching and phototrophic Bacteria, 2nd edn. Springer Verlag, New York, p 169

    Google Scholar 

  • Gogarten JP, Doolittle WF, Lawrence JG (2002) Prokaryotic evolution in light of gene transfer. Mol Biol Evol 19:2226–2238

    CAS  PubMed  Google Scholar 

  • Graham DE, Overbeek R, Olsen GJ, Woese CR (2000) An archaeal genomic signature. Proc Natl Acad Sci USA 97:3304–3308

    Article  CAS  PubMed  Google Scholar 

  • Gribaldo S, Brochier-Armanet C (2006) The origin and evolution of Archaea: a state of the art. Philos Trans R Soc Lond B Biol Sci 361:1007–1022

    Article  CAS  PubMed  Google Scholar 

  • Gribaldo S, Philippe H (2002) Ancient phylogenetic relationships. Theor Popul Biol 61:391–408

    Article  PubMed  Google Scholar 

  • Gupta RS (1998) Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev 62:1435–1491

    CAS  PubMed  Google Scholar 

  • Gupta RS (2001) The branching order and phylogenetic placement of species from completed bacterial genomes, based on conserved indels found in various proteins. Int Microbiol 4:187–202

    Article  CAS  PubMed  Google Scholar 

  • Gupta RS (2009) Protein signatures (molecular synapomorphies) that are distinctive characteristics of the major cyanobacterial clades. Int J Syst Evol Microbiol 59:2510–2526

    Article  CAS  PubMed  Google Scholar 

  • Gupta RS, Griffiths E (2006) Chlamydiae-specific proteins and indels: novel tools for studies. Trends Microbiol 14:527–535

    Article  CAS  PubMed  Google Scholar 

  • Gupta RS, Mathews DW (2010) Signature proteins for the major clades of cyanobacteria. BMC Evol Biol 10:24

    Article  PubMed  Google Scholar 

  • Gupta RS, Mok A (2007) Phylogenomics and signature proteins for the alpha Proteobacteria and its main groups. BMC Microbiol 7:106

    Article  PubMed  Google Scholar 

  • Gupta RS, Aitken K, Falah M, Singh B (1994) Cloning of Giardia lamblia heat shock protein HSP70 homologs: implications regarding origin of eukaryotic cells and of endoplasmic reticulum. Proc Natl Acad Sci USA 91:2895–2899

    Article  CAS  PubMed  Google Scholar 

  • Hallam SJ, Konstantinidis KT, Putnam N et al (2006) Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum. Proc Natl Acad Sci USA 103:18296–18301

    Article  CAS  PubMed  Google Scholar 

  • Harris JK, Kelley ST, Spiegelman GB, Pace NR (2003) The genetic core of the universal ancestor. Genome Res 13:407–412

    Article  CAS  PubMed  Google Scholar 

  • Hershberger KL, Barns SM, Reysenbach AL, Dawson SC, Pace NR (1996) Wide diversity of Crenarchaeota. Nature 384:420

    Article  CAS  PubMed  Google Scholar 

  • Huber H, Stetter KO (2001a) Order I. Thermoproteales Zillig and Stetter 1982, 267, VP emend. Burgaff, Huber and Stetter 1997b, 659 (Effective Publicatin: Zillig and Stetter in Zillig, Stetter, Schafer, Janekovic, Wunderl, Holz and Palm 1981, 224). In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology volume 1: the Archaea and the deeply branching and phototrophic bacteria, 2nd edn. Springer Verlag, New York, p 170

    Google Scholar 

  • Huber H, Stetter KO (2001b) Order III. Suflolobales Stetter 189d, 496VP (Effective publication: Stetter 1989c, 2250). In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology volume 1: the Archaea and the deeply branching and phototrophic Bacteria, 2nd edn. Springer Verlag, New York, p 198

    Google Scholar 

  • Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO (2002) A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:63–67

    Article  CAS  PubMed  Google Scholar 

  • Hugenholtz P, Pitulle C, Hershberger KL, Pace NR (1998) Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180:366–376

    CAS  PubMed  Google Scholar 

  • Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with Clustal x. Trends Biochem Sci 23:403–405

    Article  CAS  PubMed  Google Scholar 

  • Konneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546

    Article  PubMed  Google Scholar 

  • Kuo CH, Ochman H (2009) The fate of new bacterial genes. FEMS Microbiol Rev 33:38–43

    Article  CAS  PubMed  Google Scholar 

  • Lake JA, Herbold CW, Rivera MC, Servin JA, Skophammer RG (2007) Rooting the tree of life using nonubiquitous genes. Mol Biol Evol 24:130–136

    Article  CAS  PubMed  Google Scholar 

  • Lebedinsky AV, Chernyh NA, Bonch-Osmolovskaya EA (2007) Phylogenetic systematics of microorganisms inhabiting thermal environments. Biochemistry (Mosc) 72:1299–1312

    Article  CAS  Google Scholar 

  • Lerat E, Daubin V, Ochman H, Moran NA (2005) Evolutionary origins of genomic repertoires in bacteria. PLoS Biol 3:e130

    Article  PubMed  Google Scholar 

  • Liu L, Komori K, Ishino S et al (2001) The archaeal DNA primase: biochemical characterization of the p41–p46 complex from Pyrococcus furiosus. J Biol Chem 276:45484–45490

    Article  CAS  PubMed  Google Scholar 

  • Ludwig W, Klenk H-P (2005) Overview: a phylogenetic backbone and taxonomic framework for prokaryotic systamatics. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology. Springer-Verlag, Berlin, pp 49–65

    Chapter  Google Scholar 

  • Makarova KS, Koonin EV (2005) Evolutionary and functional genomics of the Archaea. Curr Opin Microbiol 8:586–594

    Article  CAS  PubMed  Google Scholar 

  • Margolin W, Wang R, Kumar M (1996) Isolation of an ftsZ homolog from the archaebacterium Halobacterium salinarium: implications for the evolution of FtsZ and tubulin. J Bacteriol 178:1320–1327

    CAS  PubMed  Google Scholar 

  • Narra HP, Cordes MH, Ochman H (2008) Structural features and the persistence of acquired proteins. Proteomics 8:4772–4781

    Article  CAS  PubMed  Google Scholar 

  • Nercessian O, Reysenbach AL, Prieur D, Jeanthon C (2003) Archaeal diversity associated with in situ samplers deployed on hydrothermal vents on the East Pacific Rise (13 degrees N). Environ Microbiol 5:492–502

    Article  PubMed  Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740 (Review, 52 refs)

    Article  CAS  PubMed  Google Scholar 

  • Pace NR (2009) Mapping the tree of life: progress and prospects. Microbiol Mol Biol Rev 73:565–576

    Article  CAS  PubMed  Google Scholar 

  • Palmieri G, Di Palo M, Scaloni A, Orru S, Marino G, Sannia G (1996) Glutamate-1-semialdehyde aminotransferase from Sulfolobus solfataricus. Biochem J 320(Pt 2):541–545

    CAS  PubMed  Google Scholar 

  • Peck JW, Bowden ET, Burbelo PD (2004) Structure and function of human Vps20 and Snf7 proteins. Biochem J 377:693–700

    Article  CAS  PubMed  Google Scholar 

  • Perevalova AA, Kolganova TV, Birkeland NK, Schleper C, Bonch-Osmolovskaya EA, Lebedinsky AV (2008) Distribution of Crenarchaeota representatives in terrestrial hot springs of Russia and Iceland. Appl Environ Microbiol 74:7620–7628

    Article  CAS  PubMed  Google Scholar 

  • Philippe H, Forterre P (1999) The rooting of the universal tree of life is not reliable. J Mol Evol 49:509–523

    Article  CAS  PubMed  Google Scholar 

  • Prangishvilli D, Zillig W, Gierl A, Biesert L, Holz I (1982) DNA-dependent RNA polymerase of thermoacidophilic archaebacteria. Eur J Biochem 122:471–477

    Article  CAS  PubMed  Google Scholar 

  • Rao NA, Talwar R, Savithri HS (2000) Molecular organization, catalytic mechanism and function of serine hydroxymethyltransferase–a potential target for cancer chemotherapy. Int J Biochem Cell Biol 32:405–416

    Article  CAS  PubMed  Google Scholar 

  • Ravin NV, Mardanov AV, Beletsky AV et al (2009) Complete genome sequence of the anaerobic, protein-degrading hyperthermophilic crenarchaeon Desulfurococcus kamchatkensis. J Bacteriol 191:2371–2379

    Article  CAS  PubMed  Google Scholar 

  • Reigstad LJ, Richter A, Daims H, Urich T, Schwark L, Schleper C (2008) Nitrification in terrestrial hot springs of Iceland and Kamchatka. FEMS Microbiol Ecol 64:167–174

    Article  CAS  PubMed  Google Scholar 

  • Reigstad LJ, Jorgensen SL, Schleper C (2010) Diversity and abundance of Korarchaeota in terrestrial hot springs of Iceland and Kamchatka. ISME J 4:346–356

    Article  CAS  PubMed  Google Scholar 

  • Reysenbach A-L (2001) Class I. thermoprotei class. nov. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology volume 1: the Archaea and the deeply branching and phototrophic Bacteria, 2nd edn. Springer Verlag, New York, p 169

    Google Scholar 

  • Reysenbach AL, Ehringer M, Hershberger K (2000) Microbial diversity at 83 degrees C in Calcite Springs, Yellowstone National Park: another environment where the Aquificales and “Korarchaeota” coexist. Extremophiles 4:61–67

    CAS  PubMed  Google Scholar 

  • Reysenbach AL, Liu Y, Banta AB et al (2006) A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents. Nature 442:444–447

    Article  CAS  PubMed  Google Scholar 

  • Rivera MC, Lake JA (1992) Evidence that eukaryotes and eocyte prokaryotes are immediate relatives. Science 257:74–76

    Article  CAS  PubMed  Google Scholar 

  • Rokas A, Holland PW (2000) Rare genomic changes as a tool for phylogenetics. Trends Ecol Evol 15:454–459

    Article  PubMed  Google Scholar 

  • Schauss K, Focks A, Leininger S et al (2009) Dynamics and functional relevance of ammonia-oxidizing archaea in two agricultural soils. Environ Microbiol 11:446–456

    Article  CAS  PubMed  Google Scholar 

  • Schleper C, Jurgens G, Jonuscheit M (2005) Genomic studies of uncultivated archaea. Nat Rev Microbiol 3:479–488

    Article  CAS  PubMed  Google Scholar 

  • Siew N, Fischer D (2003) Analysis of singleton ORFans in fully sequenced microbial genomes. Proteins 53:241–251

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Gupta RS (2009) Conserved inserts in the Hsp60 (GroEL) and Hsp70 (DnaK) proteins are essential for cellular growth. Mol Genet Genomics 281:361–373

    Article  CAS  PubMed  Google Scholar 

  • Sofia HJ, Chen G, Hetzler BG, Reyes-Spindola JF, Miller NE (2001) Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res 29:1097–1106

    Article  CAS  PubMed  Google Scholar 

  • Stackebrandt E (2006) Defining taxonomic ranks. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 29–57

    Chapter  Google Scholar 

  • Takai K, Horikoshi K (1999) Genetic diversity of archaea in deep-sea hydrothermal vent environments. Genetics 152:1285–1297

    CAS  PubMed  Google Scholar 

  • Uemori T, Sato Y, Kato I, Doi H, Ishino Y (1997) A novel DNA polymerase in the hyperthermophilic archaeon, Pyrococcus furiosus: gene cloning, expression, and characterization. Genes Cells 2:499–512

    Article  CAS  PubMed  Google Scholar 

  • Walsh DA, Doolittle WF (2005) The real ‘domains’ of life. Curr Biol 15:R237–R240

    Article  CAS  PubMed  Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74:5088–5090

    Article  CAS  PubMed  Google Scholar 

  • Woese CR, Gupta R, Hahn CM, Zillig W, Tu J (1984) The phylogenetic relationships of three sulfur dependent archaebacteria. Syst Appl Microbiol 5:97–105

    CAS  PubMed  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Hao B (2009) CVTree update: a newly designed phylogenetic study platform using composition vectors and whole genomes. Nucleic Acids Res 37:W174–W178

    Article  CAS  PubMed  Google Scholar 

  • Yang Z (2005) The power of phylogenetic comparison in revealing protein function. Proc Natl Acad Sci USA 102:3179–3180

    Article  CAS  PubMed  Google Scholar