link.springer.com

Karyotype evolution and phylogenetic relationships of hamsters (Cricetidae, Muroidea, Rodentia) inferred from chromosomal painting and banding comparison - Chromosome Research

  • ️Graphodatsky, Alexander S.
  • ️Thu May 10 2007
  • Adkins RM, Walton AH, Honeycutt RL (2002) Higher-level systematics of rodents and divergence time estimates based on two congruent nuclear genes. Mol Phylogenet Evol 26: 409–420.

    Article  Google Scholar 

  • Aniskin VM, Benazzou T, Biltueva L, Dobigny G, Granjon L, Volobouev V (2006) Unusually extensive karyotype reorganization in four congeneric Gerbillus species (Muridae: Gerbillinae). Cytogenet Genome Res 112: 131–140.

    Article  PubMed  CAS  Google Scholar 

  • Carleton MD, Musser GG (2005) Order Rodentia. In Wilson E, Reeder D-AM, eds., Mammal Species of the World: a Taxonomic and Geographic Reference. Baltimore: Johns Hopkins University Press, pp. 926–930, 1039–1186.

    Google Scholar 

  • Cavagna P, Stone G, Stanyon R (2002) Black rat (Rattus rattus) genomic variability characterized by chromosome painting. Mamm Genome 13: 157–163.

    PubMed  CAS  Google Scholar 

  • Dobigny G, Ducroz JF, Robinson TJ, Volobouev V (2004) Cytogenetics and cladistics. Syst Biol 53: 470–484.

    Article  PubMed  Google Scholar 

  • Engelbrecht A, Dobigny G, Robinson TJ (2006) Further insights into the ancestral murine karyotype: the contribution of the Otomys–Mus comparison using chromosome painting. Cytogenet Genome Res 112: 126–130.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson-Smith MA, Yang F, O’Brien PC (1998) Comparative mapping using chromosome sorting and painting. ILAR J 39: 68–76.

    PubMed  Google Scholar 

  • Froenicke L, Caldes MG, Graphodatsky A et al. (2006) Are molecular cytogenetics and bioinformatics suggesting diverging models of ancestral mammalian genomes? Genome Res 16: 306–310.

    Article  PubMed  CAS  Google Scholar 

  • Gamperl R, Vistorin G, Rosenkranz W (1978) Comparison of chromosome banding patterns in five members of Cricetinae with comments on possible relationships. Caryologia 31: 343–353.

    Google Scholar 

  • Graphodatsky AS (1989) Conserved and variable elements of mammalian chromosomes. In Halnan CRE, ed., Cytogenetics of Animals. Oxford: CAB International Press, pp. 95–123.

    Google Scholar 

  • Graphodatsky AS, Sablina OV, Meyer MN et al. (2000) Comparative cytogenetics of hamsters of the genus Calomyscus. Cytogenet Cell Genet 88: 296–304.

    Article  PubMed  CAS  Google Scholar 

  • Graphodatsky AS, Yang F, O’Brien PCM et al. (2001) Phylogenetic implications of the 38 putative ancestral chromosome segments for four canid species. Cytogenet Cell Genet 92: 243–247.

    Article  PubMed  CAS  Google Scholar 

  • Guilly M-N, Dano L, de Chamisso P, Fouchet P, Dutrillaux B, Chevillard S (2001) Comparative karyotype using bidirectional chromosome painting: how and why? Methods Cell Sci 23: 163–170.

    Article  PubMed  CAS  Google Scholar 

  • Guilly M-N, Fouchet P, de Chamisso P, Schmitz A, Dutrillaux B (1999) Comparative karyotype of rat and mouse using bidirectional chromosome painting. Chromosome Res 7: 213–221.

    Article  PubMed  CAS  Google Scholar 

  • Jansa SA, Weksler M (2004) Phylogeny of muroid rodents: relationships within and among major lineages as determined by IRBP gene sequences. Mol Phylogenet Evol 31: 256–276.

    Article  PubMed  CAS  Google Scholar 

  • Li T, O’Brien PC, Biltueva L et al. (2004) Evolution of genome organizations of squirrels (Sciuridae) revealed by cross-species chromosome painting. Chromosome Res 12: 317–335.

    Article  PubMed  Google Scholar 

  • Li T, Wang J, Su W, Nie W, Yang F (2006a) Karyotypic evolution of the family Sciuridae: inferences from the genome organizations of ground squirrels. Cytogenet Genome Res 112: 270–276.

    Article  PubMed  CAS  Google Scholar 

  • Li T, Wang J, Su W, Yang F (2006b) Chromosomal mechanisms underlying the karyotype evolution of the oriental voles (Muridae, Eothenomys). Cytogenet Genome Res 114: 50–55.

    Article  PubMed  CAS  Google Scholar 

  • Matsubara K, Nishuda-Umehara C, Tsuchiya K, Nukaya D, Matsuda Y (2004) Karyotypic evolution of Apodemus (Muridae, Rodentia) inferred from comparative FISH analyses. Chromosome Res 12: 383–395.

    Article  PubMed  CAS  Google Scholar 

  • Matsubara K, Nishida-Umehara C, Kuriowa A, Tsuchiya K, Matsuda Y (2003) Identification of chromosome rearrangements between the laboratory mouse (Mus musculus) and the Indian spiny mouse (Mus platythrix) by comparative FISH analysis. Chromosome Res 11: 57–64.

    Article  PubMed  CAS  Google Scholar 

  • Michaux J, Reyes A, Catzeftis F (2001) Evolutionary history of the most specious mammals: molecular phylogeny of muroid rodents. Mol Biol Evol 18: 2017–2031.

    PubMed  CAS  Google Scholar 

  • Murphy WJ, Eizirik E, Johnson WE, Zhang YP, Ryder OA, O’Brien SJ (2001a) Molecular phylogenetics and the origins of placental mammals. Nature 409: 614–618.

    Article  PubMed  CAS  Google Scholar 

  • Murphy WJ, Larkin DM, Everts-van der Wind A et al. (2005) Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science 309: 613–617.

    Article  PubMed  CAS  Google Scholar 

  • Murphy WJ, Stanyon, O’Brien SJ (2001b) Evolution of mammalian genome organization inferred from comparative gene mapping. Genome Biol 2: 1–8.

    Article  Google Scholar 

  • Neumann K, Michaux J, Lebedev V et al. (2006) Molecular phylogeny of the Cricetinae subfamily based on the mitochondrial cytochrome b and 12S rRNA genes and the nuclear vWF gene. Mol Phylogenet Evol 39: 135–148.

    Article  PubMed  CAS  Google Scholar 

  • Radjabli SI (1975) The karyotypic differentiation of Palaearctic hamsters (Rodentia, Cricetidae). Reports of AS of USSR 225: 697–700.

    Google Scholar 

  • Radjabli SI, Sablina OV, Graphodatsky AS (2006) Selected karyotypes. In O’Brien SJ, Nash WG, Menninger JC, eds., ATLAS of Mammalian Karyotypes. Chichester: John Wiley, pp. 188, 200–221.

    Google Scholar 

  • Rambau RV, Robinson TJ (2003) Chromosome painting in the African four-striped mouse Rhabdomys pumilio: detection of possible murid specific contiguous segment combination. Chromosome Res 11: 91–98.

    Article  PubMed  CAS  Google Scholar 

  • Richard F, Messaoudi C, Bonnet-Gamier A, Lombard M, Dutrillaux B (2003) Highly conserved chromosomes in an Asian squirrel (Menetes berdmorei, Rodentia: Sciuridae) as demonstrated by ZOO-FISH with human probes. Chromosome Res 11: 597–603.

    Article  PubMed  CAS  Google Scholar 

  • Romanenko SA, Perelman PL, Serdukova NA et al. (2006) Reciprocal chromosome painting between three laboratory rodent species. Mamm Genome 17: 1183–1192.

    Article  PubMed  Google Scholar 

  • Schmid M, Haaf T, Weis H, Schempp W (1986) Chromosomal homoeologies in hamster species of the genus Phodopus (Rodentia, Cricetinae). Cytogenet Cell Genet 43: 168–173.

    PubMed  CAS  Google Scholar 

  • Seabright M (1971) A rapid banding technique for human chromosomes. Lancet 2: 971–972.

    Article  PubMed  CAS  Google Scholar 

  • Stanyon R, Stone G, Garcia M, Froenicke L (2003) Reciprocal chromosome painting shows that squirrels, unlike murid rodents, have a highly conserved genome organization. Genomics 82: 245–249.

    Article  PubMed  CAS  Google Scholar 

  • Stanyon R, Yang F, Cavagna P et al. (1999) Reciprocal chromosome painting shows that genomic rearrangement between rat and mouse proceeds ten times faster than between humans and cats. Cytogenet Cell Genet 84: 150–155.

    Article  PubMed  CAS  Google Scholar 

  • Stanyon R, Yang F, Morescalchi AM, Galleni L (2004) Chromosome painting in the long-tailed field mouse provides insights into the ancestral murid karyotype. Cytogenet Genome Res 105: 406–411.

    Article  PubMed  CAS  Google Scholar 

  • Steppan SJ, Adkins RM, Anderson J (2004) Phylogeny and divergence-data estimates of rapid radiations in muroid rodents based on multiple nuclear genes. Syst Biol 53: 533–553.

    Article  PubMed  Google Scholar 

  • Swofford DL (1998) PAUP: Phylogenetic Analysis Using Parcimony, version 4.0. Sinauer Associates, Sunderland, MA.

  • Veyrunes F, Dobigny G, Yang F et al. (2006) Phylogenomics of the genus Mus (Rodentia; Muridae): extensive genome repatterning is not restricted to the house mouse. Proc R Soc B 273: 2925–2934.

    Article  PubMed  Google Scholar 

  • Viegas-Pequignot E, Petit D, Benazzou T et al. (1986) Chromosomal evolution in rodents. Mammalia 50: 164–202.

    Google Scholar 

  • Volobouev VT, Gallardo MH, Graphodatsky AS (2006) Rodents cytogenetics. In O’Brien J, Nash WG, Menninger JC, eds., ATLAS of Mammalian Karyotypes. Chichester: John Wiley, pp. 173–176.

    Google Scholar 

  • Vorontzov NN, Potapova EG (1979) Taxonomy of the genus Calomyscus: status of the Calomyscus in the system of Cricetidae. Zool J 58: 1391–1397 [Rusian].

    Google Scholar 

  • Yang F, Fu B, O’Brien PC, Robinson TJ, Ryder OA, Ferguson-Smith MA (2003) Karyotypic relationships of horses and zebras: results of cross-species chromosome painting. Cytogenet Genome Res 102: 235–243.

    Article  PubMed  CAS  Google Scholar 

  • Yang F, O’Brien PC, Milne BS (1999) A complete comparative chromosome map for the dog, red fox, and human and its integration with canine genetic maps. Genomics 62: 189–202.

    Article  PubMed  CAS  Google Scholar 

  • Yang F, O’Brien PCM, Ferguson-Smith MA (2000) Comparative chromosome map of the laboratory mouse and Chinese hamster defined by reciprocal chromosome painting. Chromosome Res 8: 219–227.

    Article  PubMed  CAS  Google Scholar