link.springer.com

Temporal genetic dynamics of reintroduced and translocated populations of the endangered golden lion tamarin (Leontopithecus rosalia) - Conservation Genetics

  • ️Galetti, Pedro M.
  • ️Sat Mar 25 2017
  • Allendorf FW (1986) Genetic drift and the loss of alleles versus heterozygosity. Zoo Biol 5:181–190. doi:10.1002/zoo.1430050212

    Article  Google Scholar 

  • Anderson EC, Dunham KK (2008) The influence of family groups on inferences made with the program structure. Mol Ecol Resour 8:1219–1229. doi:10.1111/j.1755-0998.2008.02355.x

    Article  CAS  PubMed  Google Scholar 

  • Baker AJ, Dietz JM (1996) Immigration in wild groups of golden lion tamarins (Leontopithecus rosalia). Am J Primatol 38:47–56

    Article  Google Scholar 

  • Baker AJ, Dietz JM, Kleiman DG (1993) Behavioural evidence for monopolization of paternity in multi-male groups of golden lion tamarins. Anim Behav 46:1091–1103. doi:10.1006/anbe.1993.1299

    Article  Google Scholar 

  • Baker AJ, Bales K, Dietz J (2002) Mating system and group dynamics in lion tamarins. In: Kleiman DG, Rylands AB (eds) Lion tamarins: biology and conservation. Smithsonian Inst press, Washington, DC, pp 188–212

    Google Scholar 

  • Ballou JD, Cooper A (1992) Genetic management strategies for endangered captive populations: the role of genetic and reproductive technology. Symp Zool Soc Lond 64:183–206

    Google Scholar 

  • Ballou JD, Foose T (2010) Demographic and genetic management of captive populations. In: Kleiman DG, Thompson KV, Baer CK (eds) Wild mammals in captivity. Principles and techniques for zoo management. University of Chicago Press, USA, pp 263–283

    Google Scholar 

  • Ballou JD, Kleiman DG, Mallinson JJC et al (2002) History, management, and conservation role of the captive lion tamarin populations. In: Kleiman DG, Rylands AB (eds) Lion tamarins: biology and conservation. Smithsonian Inst press, Washington, DC, pp 95–116

    Google Scholar 

  • Beck BB, Castro MI (1994) Environments for endangered primates. In: Giubbons EF, Wyers E, Waters E, Menzel E (eds) Naturalistic environments in captivity for animal behavior research. State University of New York, Albany, pp 209–270

    Google Scholar 

  • Beck BB, Kleiman DG, Dietz JM et al (1991) Losses and reproduction in reintroduced golden lion tamarins, Leontopithecus rosalia. Dodo 27:50–61

    Google Scholar 

  • Beck BB, Castro MI, Stoinski TS, Ballou JD (2002) The effects of prerelease environments and postrelease management on survivorship in reintroduced golden lion tamarins. In: Kleiman DG, Rylands AB (eds) Lion tamarins: biology and conservation. Smithsonian Inst press, Washington, DC, pp 188–212

    Google Scholar 

  • Bonin A, Bellemain E, Eidesen PB et al (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13:3261–3273. doi:10.1111/j.1365-294X.2004.02346.x

    Article  CAS  PubMed  Google Scholar 

  • Bouzat JL, Johnson JA, Toepfer JE et al (2009) Beyond the beneficial effects of translocations as an effective tool for the genetic restoration of isolated populations. Conserv Genet 10:191–201. doi:10.1007/s10592-008-9547-8

    Article  Google Scholar 

  • Brekke P, Bennett PM, Santure AW, Ewen JG (2011) High genetic diversity in the remnant island population of hihi and the genetic consequences of re-introduction. Mol Ecol 20:29–45. doi:10.1111/j.1365-294X.2010.04923.x

    Article  PubMed  Google Scholar 

  • Bristol RM, Tucker R, Dawson DA et al (2013) Comparison of historical bottleneck effects and genetic consequences of re-introduction in a critically endangered island passerine. Mol Ecol 22:4644–4662. doi:10.1111/mec.12429

    Article  PubMed  Google Scholar 

  • Cain CM, Livieri TM, Swanson BJ (2011) Genetic evaluation of a reintroduced population of black-footed ferrets (Mustela nigripes). J Mammal 92:751–759. doi:10.1644/10-MAMM-S-104.1

    Article  Google Scholar 

  • Carlsson J (2008) Effects of microsatellite null alleles on assignment testing. J Hered 99:616–623. doi:10.1093/jhered/esn048

    Article  CAS  PubMed  Google Scholar 

  • Coimbra-Filho AF, Mittermeier RA (1977) Conservation of the Brazilian lion tamarins Leontopithecus rosalia. In: HSH Prince Rainier III of Monaco & Bourne G (eds) Primate conservation. Academic Press, London, pp 59–94

    Google Scholar 

  • Cullingham CI, Moehrenschlager A (2013) Temporal analysis of genetic structure to assess population dynamics of reintroduced swift foxes. Conserv Biol 27:1389–1398. doi:10.1111/cobi.12122

    Article  PubMed  Google Scholar 

  • De Barba M, Waits LP, Garton EO et al (2010) The power of genetic monitoring for studying demography, ecology and genetics of a reintroduced brown bear population. Mol Ecol 19:3938–3951. doi:10.1111/j.1365-294X.2010.04791.x

    Article  PubMed  Google Scholar 

  • Dietz JM, Baker AJ (1993) Polygyny and female reproductive success in golden lion tamarins, Leontopithecus rosalia. Anim Behav 46:1067–1078

    Article  Google Scholar 

  • Dietz JM, Baker AJ, Miglioretti D (1994) Seasonal variation in reproduction, juvenile growth, and adult body mass in golden lion tamarins (Leontopithecus rosalia). Am J Primatol 34:115–132. doi:10.1002/ajp.1350340204

    Article  Google Scholar 

  • Do C, Waples RS, Peel D et al (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214. doi:10.1111/1755-0998.12157

    Article  CAS  PubMed  Google Scholar 

  • Dobson A, Ralls K, Foster M et al (1999) Corridors: reconnecting fragmented landscapes. In: Soulé ME, Terborgh J (eds) Continental conservation: scientific foundations of regional reserve networks. Island Press, Washington, DC, pp 129–170

    Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. doi:10.1007/s12686-011-9548-7

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  • Fischer J, Lindenmayer DB (2000) An assessment of the published results of animal relocations. Biol Conserv 96:1–11. doi:10.1016/S0006-3207(00)00048-3

    Article  Google Scholar 

  • Frankham R (1995) Effective population size/adult population size ratios in wildlife: a review. Genet Res 66:95–107. doi:10.1017/S0016672308009695

    Article  Google Scholar 

  • Frankham R, Ballou J, Briscoe DA (2010) Introduction to conservation genetics, 2nd edn. Cambridge University Press, New York

    Book  Google Scholar 

  • Franklin IR, Frankham R (1998) How large must populations be to retain evolutionary potential? Anim Conserv 1:69–70

    Article  Google Scholar 

  • Galbusera PHA, Gillemot S (2008) Polymorphic microsatellite markers for the endangered golden-headed lion tamarin, Leontopithecus chrysomelas (Callitrichidae). Conserv Genet 9:731–733. doi:10.1007/s10592-007-9370-7

    Article  Google Scholar 

  • Goudet J (2005) HIERFSTAT, a package for R to compute and test hierarchical F-statistics. Mol Ecol Notes 2:184–186. doi:10.1111/j.1471-8278.2004.00828.x

    Article  Google Scholar 

  • Grativol AD (2003) DNA antigo e genética da conservação do mico-leão-dourado (Leontopithecus rosalia): estrutura genética em duas escalas de tempo e sua relação com a fragmentação da Mata Atlântica. Acad. Thesis, Universidade Estadual do Norte Fluminense

  • Grativol AD, Ballou JD, Fleischer RC (2001) Microsatellite variation within and among recently isolated populations of golden lion tamarins (Leontopithecus rosalia). Conserv Genet 2:1–9

    Article  CAS  Google Scholar 

  • Griffith B, Scott J, Carpenter J, Reed C (1989) Translocation as a species conservation tool: status an strategy. Science 245:477–480

    Article  CAS  PubMed  Google Scholar 

  • Guedes-Bruni RR, Silva Neto SJ da, Morim MP, Mantovani W (2006) Composição florística e estrutura de dossel em trecho de Floresta Ombrófila Densa Atlântica sobre morrote mamelonar na Reserva Biológica de Poço das Antas, Silva Jardim, Rio de Janeiro, Brazil. Rodriguésia 57:429–442

  • Habel JC, Husemann M, Finger A et al (2014) The relevance of time series in molecular ecology and conservation biology. Biol Rev 89:484–492. doi:10.1111/brv.12068

    Article  PubMed  Google Scholar 

  • Holst B, Medici E, Marinho-Filho O et al (2006) Lion tamarin population and habitat viability assessment workshop2005: final report. Apple Valley, MN, USA

  • ICMBio (2016) Unidades de Conservação. http://www.icmbio.gov.br/portal/unidades-de-conservacao.html. Accessed 15 Jan 2016

  • IUCN (1987) The IUCN position statement on translocation of living organisms: introductions, re-introductions and re-stocking. https://portals.iucn.org/library/node/6507. Accessed 30 Sep 2016

  • IUCN/SSC (2013) Guidelines for reintroductions and other conservation translocations. Version 1.0. Gland, IUCN Species Survival Commission, Switzerland

  • Jorde PE, Ryman N (2007) Unbiased estimator for genetic drift and effective population size. Genetics 177:927–935. doi:10.1534/genetics.107.075481

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189. doi:10.1111/j.1471-8286.2004.00845.x

    Article  CAS  Google Scholar 

  • Kalinowski ST (2011) The computer program STRUCTURE does not reliably identify the main genetic clusters within species: simulations and implications for human population structure. Heredity 106:625–632. doi:10.1038/hdy.2010.95

    Article  CAS  PubMed  Google Scholar 

  • Kamath PL, Haroldson MA, Luikart G et al (2015) Multiple estimates of effective population size for monitoring a long-lived vertebrate: an application to Yellowstone grizzly bears. Mol Ecol 24:5507–5521. doi:10.1111/mec.13398

    Article  PubMed  Google Scholar 

  • Kennington WJ, Hevroy TH, Johnson MS (2012) Long-term genetic monitoring reveals contrasting changes in the genetic composition of newly established populations of the intertidal snail Bembicium vittatum. Mol Ecol 21:3489–3500. doi:10.1111/j.1365-294X.2012.05636.x

    Article  Google Scholar 

  • Kierulff MCM (2000) Ecology and Behavior of translocated groups of golden lion tamarin (Leontopitehcus rosalia). Acad. Thesis, University of Cambridge

  • Kierulff MCM, Procópio-de-Oliveira P (1996) Re-assessing the status and conservation of the golden lion tamarin (Leontopithecus rosalia) in wild. Dodo J Jersey Wildl Preservation Trust 32:98–115

    Google Scholar 

  • Kierulff MCM, Rylands AB (2003) Census and distribution of the golden lion tamarin (Leontopithecus rosalia). Am J Primatol 59:29–44. doi:10.1002/ajp.10064

    Article  PubMed  Google Scholar 

  • Kierulff MCM, Procópio-de-Oliveira PP, Beck BB et al (2002) Reintroduction and translocation as conservation tools for golden lion tamarins. In: Kleiman DG, Rylands AB (eds) Lion tamarins: biology and conservation. Smithsonian Inst press, Washington, DC, pp 271–282

    Google Scholar 

  • Kierulff MCM, Rylands AB, Procópio-de-Oliveira MM (2008) Leontopithecus rosalia. The IUCN Red List of Threatened Species 2008: e T11506A3287321. http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T11506A3287321.en. Acessed 07 March 2016

  • Kierulff MCM, Ruiz-Miranda CR, Procópio-de-Oliveira P et al (2012) The Golden lion tamarin Leontopithecus rosalia: a conservation success story. Int Zoo Yearb 46:36–45. doi:10.1111/j.1748-1090.2012.00170.x

    Article  Google Scholar 

  • Kleiman D (1989) Reintroduction of captive mammals for conservation. Bioscience 39:152–161. doi:10.2307/1311025

    Article  Google Scholar 

  • Kleiman DG, Beck BB, Dietz JM et al (1986) Conservation program for the golden lion tamarin: captive research and management, ecological studies, educational strategies, and reintroduction. In: Benirhke K (ed) Primates. Springer-Verlag New York Inc., New York, pp 959–979

    Chapter  Google Scholar 

  • Kuo CH, Janzen FJ (2003) BOTTLESIM: a bottleneck simulation program for long-lived species with overlapping generations. Mol Ecol Notes 3:669–673. doi:10.1046/j.1471-8286.2003.00532.x

    Article  CAS  Google Scholar 

  • Maruyama T, Fuerst PA (1985) Population bottlenecks and nonequilibrium models in population genetics. II. Number of alleles in a small population that was formed by a recent bottleneck. Genetics 111:675–689

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meirmans PG (2015) Seven common mistakes in population genetics and how to avoid them. Mol Ecol 24:3223–3231. doi:10.1111/mec.13243

    Article  PubMed  Google Scholar 

  • Michaelides S, Cole N, Funk SM (2015) Translocation retains genetic diversity of a threatened endemic reptile in Mauritius. Conserv Genet 16:661–672. doi:10.1007/s10592-014-0691-z

    Article  CAS  Google Scholar 

  • Mickelberg JL (2011) Understanding and managing isolation in a fragmented population of golden lion tamarins, Leontopithecus rosalia. Dissertation, George Mason University

  • Mock KE, Latch EK, Rhodes OE (2004) Assessing losses of genetic diversity due to translocation: Long-term case histories in Merriam’s turkey (Meleagris gallopavo merriami). Conserv Genet 5:631–645. doi:10.1007/s10592-004-1849-x

    Article  Google Scholar 

  • Mowry RA, Schneider TM, Latch EK et al (2015) Genetics and the successful reintroduction of the Missouri river otter. Anim Conserv 18:196–206. doi:10.1111/acv.12159

    Article  Google Scholar 

  • Ortego J, Yannic G, Shafer ABA et al (2011) Temporal dynamics of genetic variability in a mountain goat (Oreamnos americanus) population. Mol Ecol 20:1601–1611. doi:10.1111/j.1365-294X.2011.05022.x

    Article  PubMed  Google Scholar 

  • Parker KA (2008) Translocations: providing outcomes for wildlife, resource managers, scientists, and the human community. Restor Ecol 16:204–209. doi:10.1111/j.1526-100X.2008.00388.x

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi:10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  • Perez-Sweeney BM, Valladares-Padua C, Burrell AS et al (2005) Dinucleotide microsatellite primers designed for a critically endangered primate, the black lion tamarin (Leontopithecus chrysopygus). Mol Ecol Notes 5:198–201. doi:10.1111/j.1471-8286.2005.00875.x

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959. doi:10.1111/j.1471-8286.2007.01758.x

    CAS  PubMed  PubMed Central  Google Scholar 

  • Procópio-de-Oliveira P, Grativol A, Ruiz-Miranda C (2008) Conservação do mico-leão-dourado: enfrentando os desafios de uma paisagem fragmentada. Universidade Estadual do Norte Fluminense Darcy Ribeiro press, Campos dos Goytacazes, RJ, Brazil

    Google Scholar 

  • R Development Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Ribeiro MC, Metzger JP, Martensen AC et al (2009) The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153. doi:10.1016/j.biocon.2009.02.021

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution Int J Org Evolution 43:223–225

    Article  Google Scholar 

  • Sasmal I, Jenks JA, Waits LP et al (2013) Genetic diversity in a reintroduced swift fox population. Conserv Genet 14:93–102. doi:10.1007/s10592-012-0429-8

    Article  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  CAS  PubMed  Google Scholar 

  • Schwartz MK, McKelvey KS (2009) Why sampling scheme matters: the effect of sampling scheme on landscape genetic results. Conserv Genet 10:441–452. doi:10.1007/s10592-008-9622-1

    Article  Google Scholar 

  • Seddon PJ, Armstrong DP, Maloney RF (2007) Developing the science of reintroduction biology. Conserv Biol 21:303–312. doi:10.1111/j.1523-1739.2006.00627.x

    Article  PubMed  Google Scholar 

  • Sigg DP, Goldizen AW, Pople AR (2005) The importance of mating system in translocation programs: reproductive success of released male bridled nailtail wallabies. Biol Conserv 123:289–300. doi:10.1016/j.biocon.2004.11.017

    Article  Google Scholar 

  • Sinnock P (1975) The wahlund effect for the two-locus model. Am Nat 109:565–569. doi:10.2307/2678832

    Article  Google Scholar 

  • Stephen C, Whittaker D, Gillis D et al (2005) Genetic consequences of reintroductions: an example from oregon pronghorn antelope (Antilocapra americana). J Wildl Manage 69:1463–1474. doi:10.2193/0022-541X(2005)69[1463:GCORAE]2.0.CO;2

    Article  Google Scholar 

  • Stoinski TS, Beck BB, Bowman MD, Lenhardt J (1997) The gateway zoo program: a recent initiative in golden lion tamarin reintroductions. In: Wallis J (ed) Primate conservation: the role of zoological parks. American Society of Primatologists, Norman, OK, pp 113–130

    Google Scholar 

  • Thrimawithana AH, Ortiz-Catedral L, Rodrigo A, Hauber ME (2013) Reduced total genetic diversity following translocations? A metapopulation approach. Conserv Genet 14:1043–1055. doi:10.1007/s10592-013-0494-7

    Article  Google Scholar 

  • Tollington S, Jones CG, Greenwood A et al (2013) Long-term, fine-scale temporal patterns of genetic diversity in the restored Mauritius parakeet reveal genetic impacts of management and associated demographic effects on reintroduction programmes. Biol Conserv 161:28–38. doi:10.1016/j.biocon.2013.02.013

    Article  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. doi:10.1111/j.1471-8286.2004.00684.x

    Article  Google Scholar 

  • Wang J (2005) Estimation of effective population sizes from data on genetic markers. Philos Trans R Soc Lond B Biol Sci 360:1395–1409. doi:10.1098/rstb.2005.1682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waples RS (2005) Genetic estimates of contemporary effective population size: to what time periods do the estimates apply? Mol Ecol 14:3335–3352. doi:10.1111/j.1365-294X.2005.02673.x

    Article  CAS  PubMed  Google Scholar 

  • Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv Genet 7:167–184. doi:10.1007/s10592-005-9100-y

    Article  Google Scholar 

  • Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8:753–756. doi:10.1111/j.1755-0998.2007.02061.x

    Article  PubMed  Google Scholar 

  • Waples RS, Do C (2010) Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evol Appl 3:244–262. doi:10.1111/j.1752-4571.2009.00104.x

    Article  PubMed  Google Scholar