link.springer.com

Rare earth elements in street dust and associated health risk in a municipal industrial base of central China - Environmental Geochemistry and Health

  • ️Feng, Xinbin
  • ️Fri May 26 2017

References

  • Allajbeu, S., Yushin, N. S., Qarri, F., Duliu, O. G., Lazo, P., & Frontasyeva, M. V. (2016). Atmospheric deposition of rare earth elements in Albania studied by the moss biomonitoring technique, neutron activation analysis and GIS technology. Environmental Science and Pollution Research, 23, 14087–14101.

    Article  CAS  Google Scholar 

  • Aubert, D., Stille, P., Probst, A., Gauthier-Lafaye, F., Pourcelot, L., & Nero, M. D. (2002). Characterization and migration of atmospheric REE in soils and surface waters. Geochimica et Cosmochimica Acta, 66, 3339–3350.

    Article  CAS  Google Scholar 

  • Balaram, V. (1996). Recent trends in the instrumental analysis of rare earth elements in geological and industrial materials. Trends in Analytical Chemistry, 15, 475–486.

    CAS  Google Scholar 

  • Barta, C. A. (2007). Lantanide containing compounds for therapeutic care in bone resorption disorders. Dalton Transaction, 43, 5019–5030.

    Article  Google Scholar 

  • Bozlaker, A., Prospero, J. M., Fraser, M. P., & Chellam, S. (2013). Quantifying the contribution of long-range Saharan dust transport on particulate matter concentrations in Houston, Texas, using detailed elemental analysis. Environmental Science and Technology, 47(18), 10179–10187.

    CAS  Google Scholar 

  • Censi, P., Cibella, F., Falcone, E. E., Cuttitta, G., Saiano, F., Inguaggiato, C., et al. (2017). Rare earths and trace elements contents in leaves: A new indicator of the composition of atmospheric dust. Chemosphere, 169, 342–350.

    Article  CAS  Google Scholar 

  • Chakarvorty, M., Pati, J. K., Patil, S. K., Shukla, S., Niyogi, A., & Saraf, A. K. (2014). Physical characterization, magnetic measurements, REE geochemistry and biomonitoring of dust load accumulated during a protracted winter fog period and their implications. Environmental Monitoring and Assessment, 186(5), 2965–2978.

    Article  CAS  Google Scholar 

  • Chen, Z. C. (1993). A investigation of living beings affected by leaching water of rare earth mine waste residue and their rare earth concentrations. Rare Earths, 14, 43–46. (in Chinese).

    CAS  Google Scholar 

  • CNEMC (China National Environmental Monitoring Centre). (1989). The background values of Chinese soils (pp. 87–90). Beijing: Environmental Science Press of China. (in Chinese).

    Google Scholar 

  • De Miguel, E., Iribarren, I., Chacón, E., Ordoñez, A., & Charlesworth, S. (2007). Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere, 66, 505–513.

    Article  Google Scholar 

  • Faiz, Y., Siddioue, N., & Tufail, M. (2012). Pollution level and health risk assessment of road dust from an expressway. Journal of Environmental Science and Health, Part A, 47, 818–829.

    Article  CAS  Google Scholar 

  • Faruque, A. M., & Hawa, B. H. I. (2007). Environmental assessment of Dhaka city (Bangladesh) based on trace metal contents in road dusts. Environmental Geology, 51, 975–985.

    Article  Google Scholar 

  • Goguel, R. L., & St John, D. A. (1993). Chemical identification of portland cements in New Zealand concretes. Cement Concrete Res, 23, 59–68.

    Article  CAS  Google Scholar 

  • Haley, T. J. (1965). Pharmacology and toxicology of the rare earth elements. Journal of Pharmaceutical Sciences, 54, 663–670.

    Article  CAS  Google Scholar 

  • Han, Y. W., & Ma, Z. D. (2003). Geochemical (pp. 200–201). Beijing: Geological Press. (in Chinese).

    Google Scholar 

  • He, X., Zhang, Z. Y., Zhang, H. F., Zhao, Y. L., & Chai, Z. F. (2008). Neurotoxicological evaluation of long-term lanthanum chloride exposure in rats. Toxicological Sciences, 103, 354–361.

    Article  CAS  Google Scholar 

  • Henderson, P. (1984). Rare earth element geochemistry. In W. S. Fyfe (Ed.), Developments in geochemistry (Vol. 2). Amsterdam: Elsevier.

    Google Scholar 

  • Hirano, S., & Suzuki, K. T. (1996). Exposure, metabolism, and toxicity of rare earths and related compounds. Environmental Health Perspectives, 104, 85–95.

    Article  CAS  Google Scholar 

  • Huang, S. F., Li, Z. Y., Fu, M. L., Hu, F. F., Xu, H. J., & Xie, Y. (2007). Detection of genotoxicity of 6 kinds of rare earth nitrates using orthogonal experimental design. Journal of Agro-Environment Science, 1, 351–356.

    Google Scholar 

  • Huang, X., Zhang, G. C., Pan, A., Chen, F. Y., & Zheng, C. L. (2016). Protection the environment and public health from rare earth mining. Earth’s Future, 4, 532–535.

    Article  Google Scholar 

  • Ichihashi, H., Morita, H., & Tatsukawa, R. (1992). Rare earth elements in naturally grown plants in relation to their variation in soils. Environmental Pollution, 76, 157–162.

    Article  CAS  Google Scholar 

  • Kitto, M. E., Anderson, D. L., Olmcz, I., & Gordon, G. E. (1992). Rare earth elements distributions in catalyst and airborne particles. Environmental Science and Technology, 26, 1368–1375.

    Article  CAS  Google Scholar 

  • Kruger, P. C., Schell, L. M., Stark, A. D., & Parsons, P. J. (2010). Lanthanide distribution in human placental tissue by membrance desolvation-ICP-MS. Journal of Analytical Atomic Spectrometry, 25, 1298–1307.

    Article  CAS  Google Scholar 

  • Li, Z. G., Feng, X. B., Li, G. H., Bi, X. Y., Zhu, J. M., Qiu, H. B., et al. (2013). Distribution, sources and pollution status of 17 trace metal/metalloids in the street dust of a heavily industrialized city of central China. Environmental Pollution, 182, 408–416.

    Article  CAS  Google Scholar 

  • Li, H. M., Wang, D. H., Zhang, C. Q., Chen, Y. C., & Li, L. X. (2009). Characteristics of trace and rare earth elements in minerals from some typical lead-zinc deposits of Shaanxi Province. Mineral Deposits, 28, 434–448. (in Chinese).

    CAS  Google Scholar 

  • Li, S. J., Zhang, X. M., Liu, L. B., Zhou, M. H., & Ye, G. L. (2016). Relevance of non-small cell lung cancer and rare earth elements. Chinese Journal of Cancer Prevention and Treatment, 23, 347–351. (in Chinese).

    CAS  Google Scholar 

  • Liu, C. H., & Cen, K. (2007). Chemical composition and possible sources of elements in streets in dusts in Beijing. Acta Scientise Circumstantiae, 27, 1181–1188. (in Chinese).

    CAS  Google Scholar 

  • Lu, X. W., Li, L. Y., Wang, L. J., Lei, K., Huang, J., & Zhai, Y. X. (2009a). Contamination assessment of mercury and arsenic in roadway dust from Baoji, China. Atmospheric Environment, 43, 2489–2496.

    Article  CAS  Google Scholar 

  • Lu, X. W., Wang, L. J., Lei, K., Huang, J., & Zhai, Y. X. (2009b). Contamination assessment of copper, lead, zinc, manganese and nickel in street dust of Baoji, NW China. Journal of Hazardous Materials, 161, 1058–1062.

    Article  CAS  Google Scholar 

  • Mao, L. J., Mo, D. W., Yang, J. H., & Shi, C. X. (2009). Geochemistry of trace and rare earth elements in red soils from the Dongting lake area and its environmental significance. Pedosphere, 19, 615–622.

    Article  CAS  Google Scholar 

  • Masuda, A. (1962). Regularities in variation of relative abundances of lanthanide elements and an attempt to analyse sepatation-index patterns of some minerals. Journal of Earth Science, 10, 173–187.

    CAS  Google Scholar 

  • Meza-Figueroa, D., O-Villanveva, M. D. L., & Maria, L. D. P. (2007). Heavy metal distribution in dust from elementary schools in Hermosillo, Sonora, México. Atmospheric Environment, 41, 276–288.

    Article  CAS  Google Scholar 

  • Migaszewski, Z. M., & Galuszka, A. (2015). The characteristics, occurrence and geochemical behavior of rare earth elements in the environment: A review. Critical Reviews in Environmental Science and Technology, 45, 429–471.

    Article  CAS  Google Scholar 

  • Mihajlovic, J., Stärk, H. J., Wennrich, R., Laing, G. D., & Rinklebe, J. (2015). Rare earth elements in two Luvisols developed from loess under arable and forest land use in Bavaria, Germany: Concentrations, stocks, and potential mobilities. Soil Science, 180(3), 107–123.

    Article  CAS  Google Scholar 

  • Minařík, L., Žigová, A., Bendl, J., Skřivan, P., & Št’astný, M. (1998). The behaviour of rare-earth elements and Y during the rock weathering and soil formation in the Řı́čany granite massif, Central Bohemia. Science of the Total Environment, 215, 101–111.

    Article  Google Scholar 

  • Naturvårdsverket, S. (1996). Development of generic guideline values. Model and data used for generic guideline values for contaminated soils in Sweden. Report 4639. Stockholm.

  • Olmez, I., & Gordon, G. E. (1985). Rare earths: atmospheric signatures for oil-fired power plants and refineries. Science, 229, 966–968.

    Article  CAS  Google Scholar 

  • Oral, R., Bustamante, P., Warnau, M., D’Ambra, A., Guida, M., & Pagano, G. (2010). Cytogenetic and developmental toxicity of cerium and lanthanum to sea urchinembryos. Chemosphere, 81, 194–198.

    Article  CAS  Google Scholar 

  • Ordóñez, A., Loredo, J., De Miguel, E., & Charlesworth, S. (2003). Distribution of heavy metals in the street dusts and soils of an industrial city in northern Spain. Archives of Environmental Contamination and Toxicology, 44, 160–170.

    Article  Google Scholar 

  • Pagano, G., Guida, M., Tommasi, F., & Oral, R. (2015). Health effects and toxicity mechanisms of rare earth elements—Knowledge gaps and research prospects. Ecotoxicology and Environmental Safety, 115, 40–48.

    Article  CAS  Google Scholar 

  • Pang, X., Li, D. C., & Peng, A. (2001). Application of rare-earth elements in the agriculture of China and its environmental behavior in soil. Journal of Soils and Sediments, 1, 124–129.

    Article  CAS  Google Scholar 

  • Peng, A., & Zhou, J. G. (2003). Environmental chemistry and ecological effect of rare earth elements. Beijing: Environmental Science Press of China. (in Chinese).

    Google Scholar 

  • Ping, X., Cheng, D. C., & Peng, A. (2002). Application of rare-earth elements in the agriculture of China and its environmental behavior in soil. Environmental Science and Pollution Research, 9, 143–148.

    Article  Google Scholar 

  • Qi, L., & Grégoire, D. C. (2000). Determination of trace elements in twenty six Chinese geochemistry reference materials by inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 24, 51–63.

    Article  Google Scholar 

  • Qu, A., Wang, C. R., & Bo, J. (2004). Research on the cytotoxic and genotoxic effects of rare-earth element holmium to Vicia faba. Yi Chuan, 26, 195–201.

    Google Scholar 

  • Sabbioni, E., Pietra, R., Gaglione, P., Vocaturo, G., Colombo, F., Zanoni, M., et al. (1982). Long-term occupational risk of rare-earth pneumoconiosis: A case report as investigated by neutron activation analysis. Science of the Total Environment, 26, 19–32.

    Article  CAS  Google Scholar 

  • Stille, P., Steinmann, M., Pierret, M. C., Gauthier-Lafaye, F., Aubert, D., Probst, A., et al. (2006). The impact of vegetation on fractionation of rare earth elements (REE) during water-rock inter action. Journal of Geochemical Exploration, 88, 341–344.

    Article  CAS  Google Scholar 

  • Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: Implecations for mantle composition and processes. Geological Society, 42, 313–345.

    Article  Google Scholar 

  • Tanner, P. A., Ma, H. L., & Yu, P. K. N. (2008). Finger pringting metals in urban street dust of Beijing, Shanghai and Hong Kong. Environmental Science and Technology, 42, 7111–7117.

    Article  CAS  Google Scholar 

  • Taylor, S. R., & McClennan, S. M. (1985). The continental crust: Its composition and evolution. Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • US EPA (United States Environmental Protection Agency). (1989). Human Health Evaluation Manual. EPA/540/1-89/002. Risk assessment guidance for superfund, vol. l. Office of Soild Waste and Emergency Response.

  • US EPA (United States Environmental Protection Agency). (1996). Soil screening guidance: Technical background document. EPA/540/R-95/128. Office of Soild Waste and Emergency Response.

  • US EPA (United States Environmental Protection Agency). (2001). Supplemental guidance for developing soil screening levels for superfund sites. OSWER 9355.4-24. Office of Soild Waste and Emergency Response.

  • US EPA (United States Environmental Protection Agency). (2002). Environmental Protection Agency supplemental guidance for developing soil screening levels for superfund sites. OSWER 9355.4-24. Office of Solid Waste and Emergency Response, US EPA, Washington, DC.

  • US EPA (United States Environmental Protection Agency). (2007). Guidance for evaluating the oral bioavailability of metals in soils for use in human health risk assessment. OSWER 9285.7-80.

  • US EPA. (2010). Integrated Risk Information System (IRIS). United States Environmental Protection Agency. https://www.epa.gov/iris. Accessed March 2017.

  • Van den Berg, R.(1995). Human exposure to soil contamination: A qualitative and quantitative analysis towards proposals for human toxicological intervention values. RIVM Report no. 725201011. Bilthoven: National Institute of Public Health and Environmental Protection (RIVM).

  • Varrica, D., Dongarra, G., Sabatino, G., & Monna, F. (2003). Inorganic geo-chemistry of roadway dust from the metropolitan area of Palermo, Italy. Environmental Geology, 44, 222–230.

    CAS  Google Scholar 

  • Volokh, A. A., Gorbunov, A. V., Gundorina, S. F., Revich, B. A., Frontasyeva, M. V., & Pal, C. S. (1990). Phosphorus fertilizer production as a source of rare earth elements pollution of the environment. Science of the Total Environment, 95, 141–148.

    Article  CAS  Google Scholar 

  • Wei, Z. G., Yin, M., Zhang, X., Hong, F. S., Li, B., Tao, Y., et al. (2001). Rare earth elements in naturally grown fern Dicranopteris linearis in relation to their variation in soils in South-Jiangxi region (Southern China). Environmental Pollution, 114, 345–355.

    Article  CAS  Google Scholar 

  • Xie, Y. Y., & Chi, Y. P. (2016). Geochemical investigation of dry and wet deposited dust during the same dust storm event in Harbin, China: Constraint on provenance and implications for formation of aeolian loess. Journal of Asian Earth Sciences, 120, 43–61.

    Article  Google Scholar 

  • Xing, B., & Dudas, M. J. (1993). Trace and rare earth element content of white clay soils of the Three River Plain, Heilongjiang Province, PR China. Geoderma, 58, 181–199.

    Article  Google Scholar 

  • Yang, S. Y., & Li, C. X. (1999). REE geochemistry and tracing application in the Yangtze River and the Yellow River sediments. Geochimica (Beijing), 28, 374–380. (in Chinese).

    CAS  Google Scholar 

  • Yeung, Z. L. L., Kwok, R. C. W., & Yu, K. N. (2003). Determination of multi-element profiles of street dust using energy dispersive X-ray fluorescence (EDXRF). Applied Radiation and Isotopes, 58, 339–346.

    Article  CAS  Google Scholar 

  • Zaichick, S., Zaichick, V., Karandashev, V., & Nosenko, S. (2011). Accumulation of rare earth elements in human bone within the lifespan. Metallomics, 3, 186–194.

    Article  CAS  Google Scholar 

  • Zhang, H., Feng, J., Zhu, W. F., Liu, C. Q., Xu, S. Q., Shao, P. P., et al. (2000). Chromic toxicity of rare-earth elements on human beings: Implications of blood biochemical indices in ree-high regions, South Jiangxi. Biological Trace Element Research, 73, 1–17.

    Article  CAS  Google Scholar 

  • Zhang, F. S., Yamasaki, S., & Kimura, K. (2001). Rare earth element content in various waste ashes and the potential risk to Japanese soils. Environment International, 27, 393–398.

    Article  Google Scholar 

  • Zhang, Z. W., Yu, R. L., Hu, G. R., Hu, Q. C., & Wang, X. M. (2016). Geochemical characteristics and source apportionment of rare earth elements in the dustfall of Quanzhou city. Environmental Science, 37(12), 4504–4513.

    Google Scholar 

  • Zhao, L. J., Zhang, F. S., & Zhang, J. X. (2008) Chemical properties of rare earth elements in typical medical waste incinerator ashes in China. Journal of Hazardous Materials, 158(2–3), 465–470.

    Article  CAS  Google Scholar 

  • Zheng, N., Liu, J. S., Wang, Q. C., & Liang, Z. Z. (2010a). Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. Science of the Total Environment, 408, 726–733.

    Article  CAS  Google Scholar 

  • Zheng, N., Liu, J. S., Wang, Q. C., & Liang, Z. Z. (2010b). Heavy metals exposure of children from stairway and sidewalk dust in the smelting district, Northeast of China. Atmospheric Environment, 44, 3239–3245.

    Article  CAS  Google Scholar 

  • Zhu, W. F., Xu, S. Q., Shao, P. P., Zhang, H., Feng, J., Wu, D. L., et al. (1997). Investigation on intake allowance of rare earth—A study on bio-effect of rare earth in South Jiangxi, China. Environmental Science & Technology, 17, 63–66. (in Chinese).

    CAS  Google Scholar 

  • Zhu, W. F., Xu, S. Q., Zhang, H., Shao, P. P., Wu, D. S., Yang, W. J., et al. (1996). Investigation of children intelligenece quotient in REE mining area: Bio-effect study of REE mining area in South Jiangxi province. Chinese Science Bulletin, 41, 914–916.

    Google Scholar 

Download references