Dirac Theory in Hydrodynamic Form - Foundations of Physics
- ️Fabbri, Luca
- ️Fri May 12 2023
Pusey, M.F., Barrett, J., Rudolph, T.: On the reality of the quantum state. Nat. Phys. 8, 476 (2012)
Schrödinger, E.: Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, 807 (1935)
Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)
Bohm, D., Aharonov, Y.: Discussion of experimental proof for the paradox of Einstein, Rosen, and Podolsky. Phys. Rev. 108, 1070 (1957)
Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38, 447 (1966)
John Stewart Bell: On the Einstein Podolsky Rosen paradox. Phys. Phys. Fizika 1, 195 (1964)
Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden variable theories. Phys. Rev. Lett. 23, 880 (1969)
Kochen, S., Specker, E.: The Problem of Hidden Variables in Quantum Mechanics. J. Math. Mech. 17, 59 (1968)
Cabello, A.: Interpretations of Quantum Theory: A Map of Madness–In Information and Quantum Mechanics. Cambridge University Press, Cambridge (2017)
de Broglie, L.: La mécanique ondulatoire et la structure atomique de la matière et du rayonnement. J. Phys. Radium 8, 225 (1927)
de Broglie, L.: Sur l’introduction des idées d’onde-pilote et de double solution dans la théorie de l’électron de Dirac. C. R. Acad. Sci. 235, 557 (1952)
Vigier, J.P.: Forces s’exerçant sur les lignes de courant usuelles des particules de spin \(0\), \(1/2\) et \(1\) en théorie de l’onde pilote. C. R. Acad. Sci. 235, 1107 (1952)
Vigier, J.P.: Structures des micro-objets dans l’interpretation causale de la théorie des quanta. Ph.D. Thesis (1956)
Bohm, D.: A suggested interpretation of the quantum theory in terms of ‘Hidden’ Variables. Phys. Rev. 85, 166 (1952)
Takabayasi, Takehiko: On the formulation of quantum mechanics associated with classical pictures. Prog. Theor. Phys. 8, 143 (1952)
Bohm, D.: Comments on an article of Takabayasi concerning l. Prog. Theor. Phys. 9, 273 (1953)
Bohm, D., Schiller, R., Tiomno, J.: A causal interpretation of the Pauli equation (A and B). Nuovo Cimento 1, 48 and 67 (1955)
Takabayasi, T.: On the hydrodynamical representation of non-relativistic spinor equation. Prog. Theor. Phys. 12, 810 (1954)
Holland, P.R.: The Dirac equation in the de Broglie-Bohm theory of motion. Found. Phys. 22, 1287 (1992)
Dürr, D., Munch-Berndl, K.: A hypersurface Bohm-Dirac theory. Phys. Rev. A 60, 2729 (1999)
Dürr, D., Goldstein, S., Norsen, T., Struyve, W., Zanghì, N.: Can Bohmian mechanics be made relativistic? Proc. R. Soc. Lond. A 470, 20130699 (2013)
Yvon, J.: Équations de Dirac-Madelung. J. Phys. Radium 1, 18 (1940)
Takabayasi, T.: Relativistic hydrodynamics equivalent to the Dirac equation. Prog. Theor. Phys. 13, 222 (1955)
Takabayasi, T.: Hydrodynamical description of the Dirac equation. Nuovo Cimento 3, 233 (1956)
Takabayasi, T.: Relativistic hydrodynamics of the dirac matter. Prog. Theor. Phys. Supplement 4, 1 (1957)
Jakobi, G., Lochak, G.: Introduction des paramètres relativistes de Cayley-Klein dans la représentation hydrodynamique de l’équation de Dirac. C. R. Acad. Sci. 243, 234 (1956)
Jakobi, G., Lochak, G.: Decomposition en paramètres de Clebsch de l’impulsion de Dirac et interprétation physique de l’invariance de jauge des équations de la Mécanique ondulatoire. C. R. Acad. Sci. 243, 357 (1956)
Fabbri, L.: Spinors in polar form. Eur. Phys. J. Plus 136, 354 (2021)
Fabbri, L.: de Broglie-Bohm formulation of Dirac fields. Found. Phys. 52, 116 (2022)
Holland, Peter R.: The Quantum Theory of Motion. Cambridge University Press, Cambridge (1993)
Tumulka, R.: Foundations of Quantum Mechanics. Springer, Cham (2022)
Drezet, A.: Justifying Born’s rule \(P_{\alpha }=|\Psi _{\alpha }|^{2}\) using deterministic chaos, decoherence, and the de Broglie-Bohm quantum theory. Entropy 23, 1371 (2021)
Drezet, A.: Making sense of Born’s rule \(p_{\alpha }=|\!|\Psi _{\alpha }|\!|^{2}\) with the many-minds interpretation. Quant. Stud. Math. Found. 8, 315 (2021)
Drezet, A.: Forewords for the special issue ‘Pilot-wave and beyond: Louis de Broglie and David Bohm’s quest for a quantum ontology’. Foundations of Physics (2022)
Holland, P.: Uniqueness of paths in quantum mechanics. Phys. Rev. A 60, 4326 (1999)
Fabbri, L.: Geometry, Zitterbewegung, Quantization. Int. J. Geom. Meth. Mod. Phys. 16, 1950146 (2019)
Gondran, M., Gondran, A.: Replacing the singlet spinor of the EPR-B experiment in the configuration space with two single-particle spinors in physical space. Found. Phys. 46, 1109 (2016)
Bohm, D., Hiley, B.J.: The Undivided Universe: An Ontological Interpretation of Quantum Theory. Routledge, London (1993)