link.springer.com

Computational Reproducibility in Archaeological Research: Basic Principles and a Case Study of Their Implementation - Journal of Archaeological Method and Theory

  • ️Marwick, Ben
  • ️Thu Jan 07 2016

References

  • Abari, K. (2012). Reproducible research in speech sciences. International Journal of Computer Science Issues, 9(6), 43–52. Retrieved from http://www.ijcsi.org/papers/IJCSI-9-6-2-43-52.pdf

  • Arbuckle, B. S., Kansa, S. W., Kansa, E., Orton, D., Çakırlar, C., Gourichon, L., & Würtenberger, D. (2014). Data sharing reveals complexity in the westward spread of domestic animals across neolithic Turkey. PloS One, 9(6), e99845. doi:10.1371/journal.pone.0099845.

    Article  Google Scholar 

  • Baggerly, K. A., & Coombes, K. R. (2009). Deriving chemosensitivity from cell lines: forensic bioinformatics and reproducible research in high-throughput biology. The Annals of Applied Statistics, 1309–1334.

  • Barnes, N. (2010). Publish your computer code: it is good enough. Nature News, 467(7317), 753–753. doi:10.1038/467753a.

    Article  Google Scholar 

  • Bassi, S. (2007). A primer on Python for life science researchers. PLoS Computational Biology, 3(11). doi:10.1371/journal.pcbi.0030199

  • Baumer, B., & Udwin, D. (2015). R markdown. Wiley Interdisciplinary Reviews: Computational Statistics, 7(3), 167–177. doi:10.1002/wics.1348.

    Article  Google Scholar 

  • Baumer, B., Cetinkaya-Rundel, M., Bray, A., Loi, L., & Horton, N. J. (2014). R markdown: Integrating a reproducible analysis tool into introductory statistics. Technology Innovations in Statistics Education, 8(1). Retrieved from http://www.escholarship.org/uc/item/90b2f5xh

  • Beale, N. (2012). How community archaeology can make use of open data to achieve further its objectives. World Archaeology, 44(4), 612–633.

    Article  Google Scholar 

  • Begley, C. G., & Ioannidis, J. P. A. (2015). Reproducibility in science improving the standard for basic and preclinical research. Circulation Research, 116(1), 116–126. doi:10.1161/CIRCRESAHA.114.303819.

    Article  Google Scholar 

  • Bivand, R. S., Pebesma, E. J., Gomez-Rubio, V., & Pebesma, E. J. (2008). Applied spatial data analysis with R (Vol. 747248717). Springer.

  • Bocinsky, R. K. (2014). Extrinsic site defensibility and landscape-based archaeological inference: an example from the northwest coast. Journal of Anthropological Archaeology, 35, 164–176.

    Article  Google Scholar 

  • Bocinsky, R. K., & Kohler, T. A. (2014). A 2,000-year reconstruction of the rain-fed maize agricultural niche in the US southwest. Nature Communications, 5.

  • Boettiger, C. (2015). An introduction to docker for reproducible research. SIGOPS Operating System Review, 49(1), 71–79. doi:10.1145/2723872.2723882.

    Article  Google Scholar 

  • Boettiger, C., Hart, T., Chamberlain, S., & Ram, K. (2015). Building software, building community: lessons from the rOpenSci project. Journal of Open Research Software, 1(1), e8.

    Google Scholar 

  • Bonhomme, V., Picq, S., Gaucherel, C., & Claude, J. (2014). Momocs: outline analysis using r. Journal of Statistical Software, 56(13), 1–24. doi:10.18637/jss.v056.i13.

    Article  Google Scholar 

  • Borck, L., Mills, B. J., Peeples, M. A., & Clark, J. J. (2015). Are social networks survival networks? An example from the late pre-Hispanic US southwest. Journal of Archaeological Method and Theory, 22(1), 33–57.

    Article  Google Scholar 

  • Borgman, C. L. (2012). The conundrum of sharing research data. Journal of the American Society for Information Science and Technology, 63(6), 1059–1078.

    Article  Google Scholar 

  • Buckheit, J. B., & Donoho, D. L. (1995). WaveLab and reproducible research. In A. Antoniadis & G. Oppenheim (Eds.), Wavelets and statistics (pp. 55–81). Springer New York. Retrieved from http://link.springer.com/chapter/10.1007/978-1-4612-2544-7_5

  • Buffalo, V. (2015). Bioinformatics data skills reproducible and robust research with open source tools. CA: O’Reilly Media.

  • Chambers, J. M. (2009). Software for data analysis: Programming with R (1st ed. 2008. Corr. 2nd printing 2009 edition.). New York: Springer.

    Google Scholar 

  • Clarkson, C., Smith, M., Marwick, B., Fullagar, R., Wallis, L. A., Faulkner, P., & Florin, S. A. (2015). The archaeology, chronology and stratigraphy of Madjedbebe (Malakunanja II): a site in northern australia with early occupation. Journal of Human Evolution, 83, 46–64. doi:10.1016/j.jhevol.2015.03.014.

    Article  Google Scholar 

  • Contreras, D. A., & Meadows, J. (2014). Summed radiocarbon calibrations as a population proxy: a critical evaluation using a realistic simulation approach. Journal of Archaeological Science, 52, 591–608.

    Article  Google Scholar 

  • Crema, E., Edinborough, K., Kerig, T., & Shennan, S. (2014). An approximate bayesian computation approach for inferring patterns of cultural evolutionary change. Journal of Archaeological Science, 50, 160–170.

    Article  Google Scholar 

  • Dafoe, A. (2014). Science deserves better: the imperative to share complete replication files. PS: Political Science & Politics, 47(01), 60–66. doi:10.1017/S104909651300173X.

    Google Scholar 

  • Delescluse, M., Franconville, R., Joucla, S., Lieury, T., & Pouzat, C. (2012). Making neurophysiological data analysis reproducible: why and how? Journal of Physiology-Paris, 106(3–4), 159–170. doi:10.1016/j.jphysparis.2011.09.011.

    Article  Google Scholar 

  • Donoho, D. L., Maleki, A., Rahman, I. U., Shahram, M., & Stodden, V. (2009). Reproducible research in computational harmonic analysis. Computing in Science & Engineering, 11(1), 8–18. doi:10.1109/MCSE.2009.15.

    Article  Google Scholar 

  • Dorch, S. (2012). On the citation advantage of linking to data: Astrophysics. Retrieved from https://halshs.archives-ouvertes.fr/hprints-00714715/

  • Drake, W. H. A. H., Lee, B., & Wills, W. (2014). Strontium isotopes and the reconstruction of the Chaco regional system: evaluating uncertainty with bayesian mixing models. PloS One, 9(5), e95580. doi:10.1371/journal.pone.0095580.

    Article  Google Scholar 

  • Dudley, J. T., & Butte, A. J. (2010). Reproducible in silico research in the era of cloud computing. Nature Biotechnology, 28(11), 1181–1185. doi:10.1038/nbt1110-1181.

    Article  Google Scholar 

  • Dye, T. S. (2011). A model-based age estimate for polynesian colonization of Hawai’i. Archaeology in Oceania, 46(3), 130–138.

    Article  Google Scholar 

  • Eglen, S. J. (2009). A quick guide to teaching R programming to computational biology students. PLoS Computational Biology, 5(8), e1000482. doi:10.1371/journal.pcbi.1000482.

    Article  Google Scholar 

  • Faris, J., Kolker, E., Szalay, A., Bradlow, L., Deelman, E., Feng, W., & Kolker, E. (2011). Communication and data-intensive science in the beginning of the 21st century. Omics: A Journal of Integrative Biology, 15(4), 213–215.

    Article  Google Scholar 

  • Gandrud, C. (2013a). Github: a tool for social data development and verification in the cloud. The Political Methodologist, 20(2), 7–16.

    Google Scholar 

  • Gandrud, C. (2013b). Reproducible research with R and RStudio. CRC Press.

  • Gentleman, R., & Temple Lang, D. (2007). Statistical analyses and reproducible research. Journal of Computational and Graphical Statistics, 16(1), 1–23. doi:10.1198/106186007X178663.

    Article  Google Scholar 

  • Glatard, T., Lewis, L. B., Ferreira da Silva, R., Adalat, R., Beck, N., Lepage, C., & Evans, A. C. (2015). Reproducibility of neuroimaging analyses across operating systems. Frontiers in Neuroinformatics, 9, 12. doi:10.3389/fninf.2015.00012.

    Article  Google Scholar 

  • Gleditsch, N. P., & Strand, H. (2003). Posting your data: will you be scooped or will you be famous? International Studies Perspectives, 4(1), 72–107. doi:10.1111/1528-3577.04105.

    Article  Google Scholar 

  • Guedes, J. d., Jin, G., & Bocinsky, R. K. (2015). The impact of climate on the spread of rice to north-eastern China: a new look at the data from shandong province. PloS One, 10(6), e0130430.

    Article  Google Scholar 

  • Haddock, S. H. D., & Dunn, C. W. (2011). Practical computing for biologists. MA: Sinauer Associates Sunderland.

    Google Scholar 

  • Hatton, L., & Roberts, A. (1994). How accurate is scientific software? IEEE Transactions on Software Engineering, 20(10), 785–797. doi:10.1109/32.328993.

    Article  Google Scholar 

  • Healy, K. (2011). Choosing your workflow applications. The Political Methodologist, 18(2), 9–18.

    Google Scholar 

  • Henley, M., & Kemp, R. (2008). Open source software: an introduction. Computer Law & Security Review, 24(1), 77–85.

    Article  Google Scholar 

  • Henneken, E. A., & Accomazzi, A. (2011). Linking to data - effect on citation rates in astronomy. CoRR, abs/1111.3618. Retrieved from http://arxiv.org/abs/1111.3618

  • Herndon, T., Ash, M., & Pollin, R. (2014). Does high public debt consistently stifle economic growth? A critique of Reinhart and Rogoff. Cambridge Journal of Economics, 38(2), 257–279. doi:10.1093/cje/bet075.

    Article  Google Scholar 

  • Hoffa, C., Mehta, G., Freeman, T., Deelman, E., Keahey, K., Berriman, B., & Good, J. (2008). On the use of cloud computing for scientific workflows. In IEEE fourth international conference on eScience, 2008. eScience’08 (pp. 640–645). doi:10.1109/eScience.2008.167

  • Howe, B. (2012). Virtual appliances, cloud computing, and reproducible research. Computing in Science & Engineering, 14(4), 36–41. doi:10.1109/MCSE.2012.62.

    Article  Google Scholar 

  • Ince, D. C., Hatton, L., & Graham-Cumming, J. (2012). The case for open computer programs. Nature, 482(7386), 485–488. doi:10.1038/nature10836.

    Article  Google Scholar 

  • Janssen, M. A., Alessa, L. N., Barton, M., Bergin, S., & Lee, A. (2008). Towards a community framework for agent-based modelling. Journal of Artificial Societies and Social Simulation, 11(2), 6.

    Google Scholar 

  • Jones, Z. M. (2013). Git/GitHub, transparency, and legitimacy in quantitative research. The Political Methodologist, 21(1), 6–7. Retrieved from http://zmjones.com/static/papers/git.pdf

  • Joppa, L. N., McInerny, G., Harper, R., Salido, L., Takeda, K., O’Hara, K., & Emmott, S. (2013). Troubling trends in scientific software use. Science, 340(6134), 814–815.

    Article  Google Scholar 

  • Kahle, D., & Wickham, H. (2013). Ggmap: spatial visualization with ggplot2. The R Journal, 5(1), 144–161.

    Google Scholar 

  • Kansa, E. (2012). Openness and archaeology’s information ecosystem. World Archaeology, 44(4), 498–520.

    Article  Google Scholar 

  • Kansa, E. C., Kansa, S. W., & Watrall, E. (2011). Archaeology 2.0: new approaches to communication and collaboration. Cotsen Digital Archaeology Series.

  • Keeling, K. B., & Pavur, R. J. (2007). A comparative study of the reliability of nine statistical software packages. Computational Statistics & Data Analysis, 51(8), 3811–3831. doi:10.1016/j.csda.2006.02.013.

    Article  Google Scholar 

  • King, G. (1995). Replication, replication. PS: Political Science & Politics, 28(03), 444–452.

    Google Scholar 

  • Kintigh, K. (2006). The promise and challenge of archaeological data integration. American Antiquity, 71(3), 567–578. doi:10.2307/40035365.

    Article  Google Scholar 

  • Kintigh, K. W., Altschul, J. H., Beaudry, M. C., Drennan, R. D., Kinzig, A. P., & Kohler, T. A. (2014). Grand challenges for archaeology. Proceedings of the National Academy of Sciences, 111(3), 879–880.

    Article  Google Scholar 

  • Knuth, D. E. (1984). Literate programming. The Computer Journal, 27(2), 97–111.

    Article  Google Scholar 

  • Laine, C., Goodman, S. N., Griswold, M. E., & Sox, H. C. (2007). Reproducible research: moving toward research the public can really trust. Annals of Internal Medicine, 146(6), 450–453. doi:10.7326/0003-4819-146-6-200703200-00154.

    Article  Google Scholar 

  • Lang, S. (1993). Questions of scientific responsibility: the Baltimore case. Ethics & Behavior, 3(1), 3–72. doi:10.1207/s15327019eb0301_1.

    Article  Google Scholar 

  • Leisch, F., Eugster, M., & Hothorn, T. (2011). Executable papers for the R community: the R2 platform for reproducible research. Procedia Computer Science, 4, 618–626.

    Article  Google Scholar 

  • Loeliger, J., & McCullough, M. (2012). Version control with Git: Powerful tools and techniques for collaborative software development. “O’Reilly Media, Inc.”

  • Lowe, K. M., Wallis, L. A., Pardoe, C., Marwick, B., Clarkson, C., Manne, T., & Fullagar, R. (2014). Ground-penetrating radar and burial practices in western Arnhem Land, Australia. Archaeology in Oceania, 49(3), 148–157.

    Article  Google Scholar 

  • Mackay, A., Sumner, A., Jacobs, Z., Marwick, B., Bluff, K., & Shaw, M. (2014). Putslaagte 1 (PL1), the Doring river, and the later middle stone age in southern Africa’s winter rainfall zone. Quaternary International, 350, 43–58.

    Article  Google Scholar 

  • Mair, P., Hofmann, E., Gruber, K., Hatzinger, R., Zeileis, A., & Hornik, K. (2015). Motivation, values, and work design as drivers of participation in the r open source project for statistical computing. Proceedings of the National Academy of Sciences, 112(48), 14788–14792. doi:10.1073/pnas.1506047112.

    Article  Google Scholar 

  • Markowetz, F. (2015). Five selfish reasons to work reproducibly. Genome Biology, 16.

  • Marwick, B. (2013). Multiple optima in Hoabinhian flaked stone artefact palaeoeconomics and palaeoecology at two archaeological sites in northwest Thailand. Journal of Anthropological Archaeology, 32(4), 553–564.

    Article  Google Scholar 

  • Marwick, B. (2015). Code and data repository for a report on the 1989 excavations at Madjebebe, northern territory, Australia. Retrieved May 30, 2015, from http://dx.doi.org/10.6084/m9.figshare.1297059

  • McCullough, B. (2007). Got replicability? The _journal of money, credit and banking_ archive. Econ Journal Watch, 4(3), 326–337.

    Google Scholar 

  • McCullough, B., & Vinod, H. D. (2003). Verifying the solution from a nonlinear solver: a case study. American Economic Review, 93(3), 873–892. doi:10.1257/000282803322157133.

    Article  Google Scholar 

  • McCullough, B., McGeary, K. A., & Harrison, T. D. (2006). Lessons from the JMCB archive. Journal of Money, Credit, and Banking, 38(4), 1093–1107. doi:10.1353/mcb.2006.0061.

    Article  Google Scholar 

  • McCullough, B., McGeary, K. A., & Harrison, T. D. (2008). Do economics journal archives promote replicable research? The Canadian Journal of Economics / Revue Canadienne d’Economique, 41(4), 1406–1420.

    Article  Google Scholar 

  • Miguel, E., Camerer, C., Casey, K., Cohen, J., Esterling, K. M., Gerber, A., & Van der Laan, M. (2014). Promoting transparency in social science research. Science (New York, N.Y.), 343(6166), 30–31. doi:10.1126/science.1245317.

    Article  Google Scholar 

  • Miller, G. (2006). A scientist’s nightmare: software problem leads to five retractions. Science, 314(5807), 1856–1857. doi:10.1126/science.314.5807.1856.

    Article  Google Scholar 

  • Morandat, F., Hill, B., Osvald, L., & Vitek, J. (2012). Evaluating the design of the R language. In ECOOP 2012–Object-oriented programming (pp. 104–131). Springer.

  • Morin, A., Urban, J., & Sliz, P. (2012). A quick guide to software licensing for the scientist-programmer. PLoS Computational Biology, 8(7), e1002598.

    Article  Google Scholar 

  • Narasimhan, B., et al. (2005). Lisp-stat to Java to R. Journal of Statistical Software, 13(4), 1–10.

    Article  Google Scholar 

  • Noble, W. S. (2009). A quick guide to organizing computational biology projects. PLoS Computational Biology, 5(7), e1000424. doi:10.1371/journal.pcbi.1000424.

    Article  Google Scholar 

  • Nosek, B., Alter, G., Banks, G., Borsboom, D., Bowman, S., & Breckler, S. (2015). Promoting an open research culture: author guidelines for journals could help to promote transparency, openness, and reproducibility. Science (New York, NY), 348(6242), 1422.

    Article  Google Scholar 

  • Nowakowski, P., Ciepiela, E., Harżlak, D., Kocot, J., Kasztelnik, M., Bartyński, T., & Malawski, M. (2011). The collage authoring environment. Procedia Computer Science, 4, 608–617.

    Article  Google Scholar 

  • Peeples, M. A., & Schachner, G. (2012). Refining correspondence analysis-based ceramic seriation of regional data sets. Journal of Archaeological Science, 39(8), 2818–2827.

    Article  Google Scholar 

  • Peng, R. D. (2009). Reproducible research and biostatistics. Biostatistics, 10(3), 405–408. doi:10.1093/biostatistics/kxp014.

    Article  Google Scholar 

  • Peng, R. D. (2011). Reproducible research in computational science. Science (New York, Ny), 334(6060), 1226.

    Article  Google Scholar 

  • Perkel, J. M. (2015). Programming: pick up Python. Nature, 518(7537), 125–126. doi:10.1038/518125a.

    Article  Google Scholar 

  • Pienta, A. M., Alter, G. C., & Lyle, J. A. (2010). The enduring value of social science research: the use and reuse of primary research data.

  • Piwowar, H. A., & Vision, T. J. (2013). Data reuse and the open data citation advantage. Peer Journal, 1, e175.

    Article  Google Scholar 

  • Piwowar, H. A., Day, R. S., & Fridsma, D. B. (2007). Sharing detailed research data is associated with increased citation rate. PloS One, 2(3), e308. doi:10.1371/journal.pone.0000308.

    Article  Google Scholar 

  • Plummer, M., & others. (2003). JAGS: A program for analysis of Bayesian graphical models using gibbs sampling. In Proceedings of the 3rd international workshop on distributed statistical computing (Vol. 124, p. 125). Technische Universit at Wien.

  • Ram, K. (2013). Git can facilitate greater reproducibility and increased transparency in science. Source Code for Biology and Medicine, 8(1), 7.

    Article  Google Scholar 

  • Reich, V. (2008). CLOCKSS—it takes a community. The Serials Librarian, 54(1-2), 135–139.

    Article  Google Scholar 

  • Reshef, D. N., Reshef, Y. A., Finucane, H. K., Grossman, S. R., McVean, G., Turnbaugh, P. J., & Sabeti, P. C. (2011). Detecting novel associations in large data sets. Science, 334(6062), 1518–1524. doi:10.1126/science.1205438.

    Article  Google Scholar 

  • Richards, J. D. (1997). Preservation and re-use of digital data: the role of the archaeology data service. Antiquity, 71(274), 1057–1057.

    Article  Google Scholar 

  • Rieth, C. (2013). Report from the SAA board of directors. SAA Archaeological Record, May, 42–44.

  • Sandve, G. K., Nekrutenko, A., Taylor, J., & Hovig, E. (2013). Ten simple rules for reproducible computational research. PLoS Computational Biology, 9(10), e1003285. doi:10.1371/journal.pcbi.1003285.

    Article  Google Scholar 

  • Sarkar, D. (2008). Lattice: Multivariate data visualization with R. Springer Science & Business Media.

  • Schulte, E., Davison, D., Dye, T., & Dominik, C. (2012). A multi-language computing environment for literate programming and reproducible research. Journal of Statistical Software, 46(3), 1–24. Retrieved from http://yuyang0.github.io/static/doc/babel.pdf

  • Schwab, M., Karrenbach, M., & Claerbout, J. (2000). Making scientific computations reproducible. Computing in Science & Engineering, 2(6), 61–67.

    Article  Google Scholar 

  • Scopatz, A., & Huff, K. D. (2015). Effective computation in physics: Field guide to research with python. CA: O’Reilly Media.

  • Sears, J. (2011). Data sharing effect on article citation rate in paleoceanography. In AGU fall meeting abstracts (Vol. 1, p. 1628).

  • Sharpe, D. (2013). Why the resistance to statistical innovations? Bridging the communication gap. Psychological Methods, 18(4), 572. Retrieved from http://psycnet.apa.org/journals/met/18/4/572/

  • Shennan, S. J., Crema, E. R., & Kerig, T. (2015). Isolation-by-distance, homophily, and’core’ vs’.package’ cultural evolution models in neolithic europe. Evolution and Human Behavior, 36(2), 103–109.

    Article  Google Scholar 

  • Stanisic, L., Legrand, A., & Danjean, V. (2015). An effective git and org-mode based workflow for reproducible research. ACM SIGOPS Operating Systems Review, 49(1), 61–70. Retrieved from http://dl.acm.org/citation.cfm?id = 2723881

  • Stodden, V. (2009). The legal framework for reproducible scientific research: licensing and copyright. Computing in Science & Engineering, 11(1), 35–40. doi:10.1109/MCSE.2009.19.

    Article  Google Scholar 

  • Stodden, V., & Miguez, S. (2014). Best practices for computational science: software infrastructure and environments for reproducible and extensible research. Journal of Open Research Software, 2(1), e21. doi:10.5334/jors.ay.

  • Stodden, V., Guo, P., & Ma, Z. (2013). Toward reproducible computational research: an empirical analysis of data and code policy adoption by journals. PloS One, 8(6), e67111. doi:10.1371/journal.pone.0067111.

    Article  Google Scholar 

  • Teal, T. K., Cranston, K. A., Lapp, H., White, E., Wilson, G., Ram, K., & Pawlik, A. (2015). Data carpentry: workshops to increase data literacy for researchers. International Journal of Digital Curation, 10(1), 135–143.

    Article  Google Scholar 

  • Tenopir, C., Allard, S., Douglass, K., Aydinoglu, A. U., Wu, L., Read, E., & Frame, M. (2011). Data sharing by scientists: practices and perceptions. PloS One, 6(6), e21101. doi:10.1371/journal.pone.0021101.

    Article  Google Scholar 

  • Thompson, P. A., & Burnett, A. (2012). Reproducible research. CORE Issues in Professional and Research Ethics, 1(6).

  • Tippmann, S. (2014). Programming tools: adventures with R. Nature, 517(7532), 109–110. doi:10.1038/517109a.

    Article  Google Scholar 

  • Vandewalle, P. (2012). Code sharing is associated with research impact in image processing. Computing in Science and Engineering, 14(4), 42–47.

    Article  Google Scholar 

  • VanPool, T. L., & Leonard, R. D. (2010). Quantitative analysis in archaeology (1 edition.). Chichester, West Sussex, U.K. Malden, MA: Wiley-Blackwell.

    Book  Google Scholar 

  • Vihinen, M. (2015). No more hidden solutions in bioinformatics. Nature, 521(7552), 261–261. doi:10.1038/521261a.

    Article  Google Scholar 

  • Wicherts, J. M., Bakker, M., & Molenaar, D. (2011). Willingness to share research data is related to the strength of the evidence and the quality of reporting of statistical results. PloS One, 6(11), e26828. doi:10.1371/journal.pone.0026828.

    Article  Google Scholar 

  • Wickham, H. (2009). Ggplot2: Elegant graphics for data analysis. Springer Science & Business Media.

  • Wickham, H. (2014). Advanced R (1 edition.). Boca Raton, FL: Chapman; Hall/CRC.

  • Wickham, H. (2015). R packages (1 edition.). Sebastopol, Calif.: O’Reilly Media.

  • Widemann, B. T. y, Bolz, C. F., & Grelck, C. (2013). The functional programming language r and the paradigm of dynamic scientific programming. In H.-W. Loidl & R. Peña (Eds.), Trends in functional programming (Vol. 7829, pp. 182–197). Springer Berlin Heidelberg. doi:10.1007/978-3-642-40447-4_12

  • Wilson, G. (2014). Software carpentry: Lessons learned. F1000Research, Retrieved from http://f1000research.com/articles/3-62/v1.

  • Wilson, G., Aruliah, D. A., Brown, C. T., Chue Hong, N. P., Davis, M., Guy, R. T., & Wilson, P. (2014). Best practices for scientific computing. Plos Biology, 12(1), e1001745. doi:10.1371/journal.pbio.1001745.

    Article  Google Scholar 

  • Xie, Y. (2013). Dynamic documents with R and knitr. CRC Press.

Download references