Improving habitat and connectivity model predictions with multi-scale resource selection functions from two geographic areas - Landscape Ecology
- ️Ganey, Joseph L.
- ️Mon Mar 04 2019
References
Ager AA, Finney MA, Kerns BK, Maffei H (2007) Modeling wildfire risk to northern spotted owl (Strix occidentalis caurina) habitat in central Oregon. For Ecol Manag 246:45–56
Barnosky AD, Matzke N, Tomiya S, Wogan GO, Swartz B, Quental TB, Marshall C, McGuire JL, Lindsey EL, Maguire KC, Mersey B, Ferrer EA (2011) Has the Earth’s sixth mass extinction already arrived? Nature 471:51–57
Barrowclough GF, Groth JG, Mertz LA, Gutiérrez RJ (2006) Genetic structure of Mexican spotted owl populations in a fragmented landscape. Auk 123:1090–1102
Beier P, Spencer W, Baldwin RF, McRae BH (2011) Toward best practices for developing regional connectivity maps. Conserv Biol 25(5):879–892
Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377
Bond ML (2016) The heat is on: spotted owls and wildfire. Reference module in earth systems and environmental sciences. Elsevier, Amsterdam. http://www.sciencedirect.com/science/article/pii/B9780124095489100144. Accessed 8 Mar 2018
Boyce MS, Vernier PR, Nielsen SE, Schmiegelow FKA (2002) Evaluating resource selection functions. Ecol Model 157:281–300
Burnham KP, Anderson DR (1998) Model selection and inference: a practical information-theoretic approach. Springer, New York
Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM (2015) Accelerated modern human-induced species losses: entering the sixth mass extinction. Science Advances 1(5):e1400253
Chiono LA, Fry DL, Collins BM, Chatfield AH, Stephens SL (2017) Landscape-scale fuel treatment and wildfire impacts on carbon stocks and fire hazard in California spotted owl habitat. Ecosphere 8(1):e01648
Compton BW, McGarigal K, Cushman SA, Gamble LR (2007) A resistant kernel model of connectivity for vernal pool breeding amphibians. Conserv Biol 21:788–799
Cushman SA, McRae B, Adriaensen F, Beier P, Shirley M, Zeller K (2013a) Biological corridors and connectivity. In: Macdonald DW, Willis KJ (eds) Key topics in conservation biology 2. Wiley, Oxford, pp 384–404
Cushman SA, Mersmann TJ, Moisen GG, McKelvey KS, Vojta CD (2013b) Chapter 5: using habitat models for habitat mapping and monitoring. In: Rowland MM, Vojta CD (eds) A technical guide for monitoring wildlife habitat. General Technical Report WO-89. USDA Forest Service, Washington, DC, pp 5.1–5.14
De Vos JM, Joppa LN, Gittleman JL, Stephens PR, Pimm SL (2015) Estimating the normal background rate of species extinction. Conserv Biol 29(2):452–462
Engler R, Guisan A, Rechsteiner L (2004) An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. J Appl Ecol 41(2):263–274
Evans JS (2017) spatialEco. R Package version 0.0.1-7. https://CRAN.R-project.org/package=spatialEco
Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515
Forsman ED, Anthony RG, Reid JA, Loschl PJ, Sovern SG, Taylor M, Biswell BL, Ellingson A, Meslow EC, Miller GS, Swindle KA, Thrailkill JA, Wagner FF, Seaman DE (2002) Natal and breeding dispersal of northern spotted owls. Wildl Monogr 149:1–35
Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10(6):1500–1508
Freeman EA, Moisen G (2008) PresenceAbsence: an R package for presence-absence model analysis. J Stat Softw 23(11):1–31
Ganey JL, Apprill DL, Kyle SC, Rawlinson TA, Jonnes RS, Ward JP Jr (2014) Breeding dispersal of Mexican spotted owls in the Sacramento Mountains, New Mexico. Wilson J Ornithol 126:516–524
Ganey JL, Block WM, Dwyer JK, Strohmeyer BE, Jenness JS (1998) Dispersal movements and survival rates of juvenile Mexican spotted owls in northern Arizona. Wilson Bull 110:206–217
Ganey JL, Iníguez JM, Hedwall S, Block WM, Ward JP Jr, Jonnes RS, Rawlinson TA, Kyle SC, Apprill DL (2016) Evaluating desired conditions for Mexican spotted owl nesting and roosting habitat. For Sci 62:457–462
Ganey JL, Jenness JS (2013) An apparent case of long distance breeding dispersal by a Mexican spotted owl in New Mexico. Research Note RMRS-RN-53WWW. USDA Forest Service, Rocky Mountain Research Station, Fort Collins
Ganey JL, Wan HY, Cushman SA, Vojta CD (2017) Conflicting perspectives on spotted owls, wildfire, and forest restoration. Fire Ecol 13(3):146–165
Ganey JL, Ward JP Jr, Willey DW (2011) Status and ecology of Mexican spotted owls in the Upper Gila Mountains Recovery Unit, Arizona and New Mexico. General Technical Report RMRS-GTR-256WWW. USDA Forest Service, Rocky Mountain Research Station, Fort Collins
Gates S (2002) Review of methodology of quantitative reviews using meta-analysis in ecology. J Anim Ecol 71:547–557
Gurevitch J, Hedges LV (1993) Meta-analysis: combining the results of independent experiments. In: Scheiner S, Gurevitch J (eds) Design and analysis of ecological experiments. Chapman and Hall, New York, pp 378–398
Gutiérrez RJ, Seamans ME, Peery MZ (1996) Intermountain movement by Mexican spotted owls (Strix occidentalis lucida). Great Basin Nat 56:87–89
Hedges LV, Olkin I (1985) Statistical methods for meta-analysis. Academic Press, Orlando
Hengl T, Sierdsema H, Radovic A, Dilo A (2009) Spatial prediction of species’ distributions from occurrence-only records: combining point pattern analysis. ENFA and regression-kriging. Ecol Model 220(24):3499–3511
Jones GM, Gutiérrez RJ, Tempel DJ, Whitmore SA, Berigan WJ, Peery MZ (2016) Megafires: an emerging threat to old-forest species. Front Ecol Environ 14:300–306
Keeley A, Beier P, Gagnon J (2016) Estimating landscape resistance from habitat suitability: effects of data source and nonlinearities. Landscape Ecol 31(9):2151–2162
Keeley A, Beier P, Keeley BW, Fagan ME (2017) Habitat suitability is a poor proxy for landscape connectivity during dispersal and mating movements. Landscape Urban Plan 161:90–102
Keitt TH, Urban DL, Milne BT (1997) Detecting critical scales in fragmented landscapes. Conserv Ecol 1:1–17
LANDFIRE (2001) Existing vegetation type layer, forest canopy cover layer, and digital elevation model layer. U.S. Department of the Interior, Geological Survey. http://landfire.cr.usgs.gov/viewer/
Landguth EL, Hand BK, Glassy J, Cushman SA, Sawaya MA (2012) UNICOR: a species connectivity and corridor network simulator. Ecography 35(1):9–14
Lommler M (2018) Conference presentation. In: 51st Joint Annual Meeting of the Arizona/New Mexico Chapters of the Wildlife Society and Arizona/New Mexico Chapters of the American Fisheries Society, Flagstaff, Arizona, 3 February 2018
Mateo-Sánchez MC, Balkenhol N, Cushman SA, Pérezm T, Domínguez A, Saura S (2015a) A comparative framework to infer landscape effects on population genetic structure: are habitat suitability models effective in explaining gene flow? Landscape Ecol 30(8):1405–1420
Mateo-Sánchez MC, Balkenhol N, Cushman SA, Pérezm T, Domínguez A, Saura S (2015b) Estimating effective landscape distances and movement corridors: comparison of habitat and genetic data. Ecosphere 6(4):1–16
May CA, Gutiérrez RJ (2002) Habitat associations of Mexican spotted owl nest and roost sites in central Arizona. Wilson Bull 114:457–466
McClaran MP, Brady WW (1994) Arizona’s diverse vegetation and contributions to plant ecology. Rangelands 16(5):208–217
Meiman S, Anthony R, Glenn E, Bayless T, Ellingson A, Hansen MC, Smith C (2003) Effects of commercial thinning on home-range and habitat-use patterns of a male northern spotted owl: a case study. Wildl Soc Bull 31:1254–1262
Newbold T, Hudson LN, Hill SL, Contu S, Lysenko I, Senior RA, Börger L, Bennett DJ, Choimes A, Collen B, Day J, De Palma A, Díaz S, Echeverria-Londoño S, Edgar MJ, Feldman A, Garon M, Harrison ML, Alhusseini T, Ingram DJ, Itescu Y, Kattge J, Kemp V, Kirkpatrick L, Kleyer M, Correia DL, Martin CD, Meiri S, Novosolov M, Pan Y, Phillips HR, Purves DW, Robinson A, Simpson J, Tuck SL, Weiher E, White HJ, Ewers RM, Mace GM, Scharlemann JP, Purvis A (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50
Odion DC, Hanson CT, DellaSala DA, Baker WL, Bond ML (2014) Effects of fire and commercial thinning on future habitat of the northern spotted owl. Open Ecol J 7:37–51
Peery MZ, Gutiérrez RJ, Seamans ME (1999) Habitat composition and configuration around Mexican spotted owl nest and roost sites in the Tularosa Mountains, New Mexico. J Wildl Manag 63:36–43
Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, Raven PH, Roberts CM, Sexton JO (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science 344(6187):1246752
PRISM Climate Group (2014) Oregon State University. http://prism.oregonstate.edu
Roccaforte JP, Huffman DW, Fulé PZ, Covington WW, Chancellor WW, Stoddard MT, Crouse JE (2015) Forest structure and fuels dynamics following ponderosa pine restoration treatments, White Mountains, Arizona, USA. For Ecol Manag 337:174–185
Rudnick DA, Ryan SJ, Beier P, Cushman SA, Dieffenbach F, Epps CW, Gerber LR, Hartter J, Jenness JS, Kintsch J, Merenlender AM, Perkl RM, Preziosi DV, Trombulak SC (2012) The role of landscape connectivity in planning and implementing conservation and restoration priorities. Issues Ecol 16:1–20
Seamans ME, Gutiérrez RJ (2007) Habitat selection in a changing environment: the relationship between habitat alteration and spotted owl territory occupancy and breeding dispersal. Condor 109:566–576
Spear SF, Balkenhol N, Fortin M, McRae BH, Scribner K (2010) Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Mol Ecol 19(17):3576–3591
Stephens SL, Miller JD, Collins BM, North MP, Keane JJ, Roberts SL (2016) Wildfire impacts on California spotted owl nesting habitat in the Sierra Nevada. Ecosphere 7(11):e01478
Stockwell CA, Hendry AP, Kinnison MT (2003) Contemporary evolution meets conservation biology. Trends Ecol Evol 18(2):94–101
Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240(4857):1285–1293
Tempel DJ, Gutiérrez RJ, Whitmore SA, Reetz MJ, Stoelting RE, Berigan WJ, Seamans ME, Peery MZ (2014) Effects of forest management on California spotted owls: implications for reducing wildfire risk in fire-prone forests. Ecol Appl 24:2089–2106
Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–147
Timm BC, McGarigal K, Cushman SA, Ganey JL (2016) Multi-scale Mexican spotted owl (Strix occidentalis lucida) nest/roost habitat selection in Arizona and a comparison with single-scale modeling results. Landscape Ecol 31(6):1209–1225
Urban D, Keitt T (2001) Landscape connectivity: a graph-theoretic perspective. Ecology 82:1205–1218
U.S. Department of Agriculture (2014) Final environmental impact statement for the four-forest restoration initiative, vol 1. USDA Forest Service, Southwestern Region, Coconino and Kaibab National Forests, Coconino County, Arizona
U.S. Department of Interior (1993) Endangered and threatened wildlife and plants; final rule to list the Mexican Spotted Owl as a threatened species. U.S. Fish and Wildlife Service. Fed Regis 58:14248–14271
U.S. Department of Interior (2012) Final recovery plan for the Mexican spotted owl (Strix occidentalis lucida), first revision. U.S. Fish and Wildlife Service, Albuquerque
Waltz AEM, Stoddard MT, Kalies EL, Springer JD, Huffman DW, Sánchez Meador A (2014) Effectiveness of fuel reduction treatments: assessing metrics of forest resiliency and wildfire severity after the Wallow Fire, AZ. For Ecol Manag 334:43–52
Wan HY (2018) Habitat, connectivity, and gene flow of Mexican spotted owl in southwestern forests. Dissertation, Northern Arizona University
Wan HY, Ganey JL, Vojta CD, Cushman SA (2018) Managing emerging threats to spotted owls. J Wildl Manag 82(4):682–697
Wan HY, McGarigal K, Ganey JL, Lauret V, Timm BC, Cushman SA (2017) Meta-replication reveals nonstationarity in multi-scale habitat selection of Mexican Spotted Owl. Condor 119(4):641–658
Willey DW, van Riper IIIC (2000) First-year movements by juvenile Mexican spotted owls in the canyonlands of Utah. J Raptor Res 34:1–7
Willey DW, van Riper IIIC (2007) Home range characteristics of Mexican spotted owls in the canyonlands of Utah. J Raptor Res 41:10–15
Young A, Clarke G (2000) Genetics, demography and viability of fragmented populations, vol 4. Cambridge University Press, Cambridge, pp 35–53
Zaniewski AE, Lehmann A, Overton JM (2002) Predicting species spatial distributions using presence-only data: a case study of native New Zealand ferns. Ecol Model 157:261–280
Zeller KA, McGarigal K, Cushman SA, Beier P, Vickers TW, Boyce WM (2017) Sensitivity of resource selection and connectivity models to landscape definition. Landscape Ecol 32:835–855
Zeller KA, McGarigal K, Whiteley AR (2012) Estimating landscape resistance to movement: a review. Landscape Ecol 27:777–797
Ziegler JP, Hoffman C, Battaglia M, Mell W (2017) Spatially explicit measurements of forest structure and fire behavior following restoration treatments in dry forests. For Ecol Manage 386:1–12