link.springer.com

The changing science of machine learning - Machine Learning

  • ️Langley, Pat
  • ️Fri Feb 18 2011

Article PDF

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • DeJong, G., & Mooney, R. (1986). Explanation-based learning: An alternative view. Machine Learning, 1, 145–176.

    Google Scholar 

  • Kibler, D., & Langley, P. (1988). Machine learning as an experimental science. In Proceedings of the third European working session on learning (pp. 81–92). Glasgow: Pittman.

    Google Scholar 

  • Laird, J. E., Rosenbloom, P. S., & Newell, A. (1986). Chunking in Soar: The anatomy of a general learning mechanism. Machine Learning, 1, 11–46.

    Google Scholar 

  • Langley, P. (1986). Human and machine learning. Machine Learning, 1, 243–248.

    Google Scholar 

  • Langley, P. (1987). Research papers in machine learning. Machine Learning, 2, 195–198.

    Google Scholar 

  • Langley, P. (1989). Toward a unified science of machine learning. Machine Learning, 3, 253–259.

    Google Scholar 

  • Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (Eds.) (1983). Machine learning: An artificial intelligence approach. San Mateo: Morgan Kaufmann.

    Google Scholar 

  • Richards, B. L., & Mooney, R. J. (1995). Automated refinement of first-order horn-clause domain theories. Machine Learning, 19, 95–131.

    Google Scholar 

  • Simon, H. A. (1983). Why should machines learn? In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning: An artificial intelligence approach. San Mateo: Morgan Kaufmann.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Computer Science and Engineering, Arizona State University, P.O. Box 87-8809, Tempe, AZ, 85287, USA

    Pat Langley

Authors

  1. Pat Langley

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Pat Langley.

About this article

Cite this article

Langley, P. The changing science of machine learning. Mach Learn 82, 275–279 (2011). https://doi.org/10.1007/s10994-011-5242-y

Download citation

  • Published: 18 February 2011

  • Issue Date: March 2011

  • DOI: https://doi.org/10.1007/s10994-011-5242-y