link.springer.com

QTLs detected for individual sugars and soluble solids content in apple - Molecular Breeding

  • ️Evans, Kate
  • ️Sat May 30 2015

References

  • Ackermann J, Fischer M, Amado R (1992) Changes in sugars, acids, and amino acids during ripening and storage of apples (Cv. Glockenapfel). J Agric Food Chem 40:1131–1134

    Article  CAS  Google Scholar 

  • Alspach PA, Oraguzie NC (2002) Estimation of genetic parameters of apple (Malus × domestica) fruit quality from open-pollinated families. N Z J Crop Hortic Sci 30:219–228

    Article  Google Scholar 

  • Bai Y, Dougherty L, Li M, Fazio G, Cheng L, Xu K (2012) A natural mutation-led truncation in one of the two aluminum-activated malate transporter-like genes at the Ma locus is associated with low fruit acidity in apple. Mol Genet Genomics 287:663–678

    Article  CAS  PubMed  Google Scholar 

  • Berüter J (1985) Sugar accumulation and changes in the activities of related enzymes during development of the apple fruit. J Plant Physiol 121:331–341

    Article  Google Scholar 

  • Berüter J (2004) Carbohydrate metabolism in two apple genotypes that differ in malate accumulation. Plant Physiol 161:1011–1029

    Article  Google Scholar 

  • Bink MCAM, Anderson AD, van de Weg WE, Thompson EA (2008) Comparison of marker-based pairwise relatedness estimators on a pedigreed plant population. Theor Appl Genet 117:843–855

    Article  PubMed  Google Scholar 

  • Bink MCAM, Totir LR, Ter Braak CJ, Winkler CR, Boer MP, Smith OS (2012) QTL linkage analysis of connected populations using ancestral marker and pedigree information. Theor Appl Genet 124:1097–1113

    Article  PubMed Central  PubMed  Google Scholar 

  • Bink MCAM, Jansen J, Madduri M, Voorrips RE, Durel C-E, Kouassi AB, Laurens L, Mathis F, Gessler C, Gobbin D, Rezzonico F, Patocchi A et al (2014) Bayesian QTL analyses using pedigreed families of an outcrossing species, with application to fruit firmness in apple. Theor Appl Genet 127:1073–1090

    CAS  PubMed  Google Scholar 

  • Blanpied GD, Silsby KJ (1992) Predicting harvest date windows for apples. Cornell Cooper Ext 221:1–12

    Google Scholar 

  • Brown AG, Harvey DM (1971) The nature and inheritance of sweetness and acidity in the cultivated apple. Euphytica 20:68–80

    Article  CAS  Google Scholar 

  • Causse M, Saliba-Colombani V, Lecomte L, Duffe P, Rousselle P, Buret M (2002) QTL analysis of fruit quality in fresh market tomato: a few chromosomal regions control the variation of sensory and instrumental traits. J Exp Bot 53:2089–2098

    Article  CAS  PubMed  Google Scholar 

  • Chagné D, Crowhurst RN, Troggio M, Davey MW, Gilmore B, Lawley C, Vanderzande S, Hellens RP, Kumar S, Cestaro A, Velasco R, Main D, Rees JD, Iezzoni A, Mockler L, van de Weg E, Gardiner SE, Bassil N, Peace C (2012a) Genome-wide SNP detection, validation, and development of an 8 K SNP array for apple. PLoS ONE 7:e31745

    Article  PubMed Central  PubMed  Google Scholar 

  • Chagné D, Krieger C, Rassam M, Sullivan M, Fraser J, André C, Pindo M, Troggio M, Gardiner SE, Henry RA, Allan AC, McGhie TK, Laing WA (2012b) QTL and candidate gene mapping for polyphenolic composition in apple fruit. BMC Plant Biol 12:12. http://www.biomedcentral.com/1471-2229/12/12

  • Chaïb J, Lecomte L, Buret M, Causse M (2006) Stability over genetic backgrounds, generations and years of quantitative trait locus (QTLs) for organoleptic quality in tomato. Theor Appl Genet 112(5):934–944

    Article  PubMed  Google Scholar 

  • Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, Monet R (1999) Mapping QTLs controlling fruit quality in peach (Prunus persica (L.) Batsch). Theor Appl Genet 98:18–31

    Article  CAS  Google Scholar 

  • Dreesen R, Davey M, Peeters K, Van der Veken N, Keulemans J (2012) Development and mapping of molecular markers for candidate genes involved in apple fruit texture. Acta Hortic 934:829–835

    Google Scholar 

  • Dunemann F, Ulrich D, Boudichevskaia A, Grafe C, Weber WE (2009a) QTL mapping of aroma compounds analyzed by headspace solid-phase microextraction gas chromatography in the apple progeny ‘Discovery’ × ‘Prima’. Mol Breed 23:501–521

    Article  CAS  Google Scholar 

  • Dunemann F, Boudichevskaia A, Grafe C, Weber WE, Ulrich D (2009b) QTL and candidate gene mapping for aroma compounds in the apple progeny ‘Discovery’ × ‘Prima’. Acta Hortic 839:433–440

    CAS  Google Scholar 

  • Eduardo I, Chietera G, Pirona R, Pacheco I, Troggio M, Banchi E, Bassi D, Rossini L, Vecchietti A, Pozzi C (2013) Genetic dissection of aroma volatile compounds from the essential oil of peach fruit: QTL analysis and identification of candidate genes using dense SNP maps. Tree Genet Genomes 9:189–204

    Article  Google Scholar 

  • Etienne C, Rothan C, Moing A, Plomion C, Bodénès C, Svanella-Dumas L, Cosson P, Pronier V, Monet R, Dirlewanger E (2002) Candidate genes and QTLs for sugar and organic acid content in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 105:145–159

    Article  CAS  PubMed  Google Scholar 

  • Evans K (2013) Apple breeding in the Pacific Northwest. Acta Hortic 976:75–78

    Google Scholar 

  • Evans KM, James CM (2003) Identification of SCAR markers linked to Pl-w mildew resistance in apple. Theor Appl Genet 106:1178–1183

    CAS  PubMed  Google Scholar 

  • Evans K, Guan Y, Luby J, Clark M, Schmitz C, Brown S, Orcheski B, Peace C, van de Weg E, Iezzoni A (2012) Large-scale standardized phenotyping of apple in RosBREED. Acta Hortic 945:233–238

    Google Scholar 

  • Feng F, Li M, Ma F, Cheng L (2014) Effects of location within the tree canopy on carbohydrates, organic acids, amino acids and phenolic compounds in the fruit peel and flesh from three apple (Malus × domestica) cultivars. Hortic Res 1:14019. doi:10.1038/hortres.2014.19

    Article  Google Scholar 

  • Fischer C (1994) Shortening the juvenile period in apple breeding. In: Schmidt H, Kellerhals M (eds) Progress in temperate fruit breeding. Kluwer Academic Publishers, Dordrecht, pp 162–164

    Google Scholar 

  • Fuleki T, Pelayo E, Palabay RB (1994) Sugar composition of varietal juices produced from fresh and stored apples. J Agric Food Chem 42:1266–1275

    Article  CAS  Google Scholar 

  • Harker FR, Gunson FA, Jaeger SR (2003) The case for fruit quality: an interpretive review of consumer attitudes, and preferences for apples. Postharvest Biol Technol 28:333–347

    Article  Google Scholar 

  • Harker FR, Kupfeman EM, Marin AB, Gunson FA, Triggs CM (2008) Eating quality standards for apple based on consumer preferences. Postharvest Biol Technol 50:70–78

    Article  Google Scholar 

  • Iezzoni A, Weebadde C, Luby J, Yue CY, Peace CP, Bassil N, McFerson J (2010) RosBREED: enabling marker-assisted breeding in Rosaceae. Acta Hortic 859:389–394

    Google Scholar 

  • Janick J, Cummins JN, Brown SK, Hemmat M (1996) Apples. In: Janick J, Moore JN (eds) Fruit breeding: volume I. tree and tropical fruits. Wiley, New Jersey, pp 1–77

    Google Scholar 

  • Janick J, Scofield S, Goldschmidt EE (2009) A history of grafting. Hortic Rev 35:437–493

    Google Scholar 

  • Jung S, Cestaro A, Troggio M, Main D, Zheng P, Cho I, Folta KM, Sosinski B, Abbott A, Celton JM, Arus P, Shulaev V, Verde I, Morgante M, Rokhsar DS, Velasco R, Sargent DJ (2012) Whole genome comparisons of Fragaria, Prunus and Malus reveal different modes of evolution between Rosaceous subfamilies. BMC Genom 13:129. doi:10.1186/1471-2164-13-129

    Article  CAS  Google Scholar 

  • Kader AA (2008) Flavor quality of fruits and vegetables. J Sci Food Agric 88:1863–1868

    Article  CAS  Google Scholar 

  • Kampstra P (2008) Beanplot: a boxplot for alternative for visual comparison of distributions. J Stat Softw 28:1–9

    Google Scholar 

  • Kenis K, Keulemans J, Davey M (2008) Identification and stability of QTLs for fruit quality traits in apple. Tree Genet Genomes 4:647–661

    Article  Google Scholar 

  • King GJ, Maliepaard C, Lynn JR, Alston FH, Durel CE, Evans KM, Griffon B, Laurens F, Manganaris AG, Schrevens E, Tartarini S, Verhaegh J (2000) Quantitative genetic analysis and comparison of physical and sensory descriptors relating to fruit flesh firmness in apple (Malus pumila Mill.). Theor Appl Genet 100:1074–1084

    Article  Google Scholar 

  • Klages K, Donnison H, Wünsche J, Boldingh H (2001) Diurnal changes in non-structural carbohydrates in leaves, phloem exudate and fruit in ‘Braeburn’ apple. Aust J Plant Physiol 28:131–139

    CAS  Google Scholar 

  • Kromdijk J, Bertin N, Heuvelink E, Molenaar J, de Visser PHB, Marcelis LFM, Struik PC (2014) Crop management impacts the efficiency of quantitative trait loci (QTL) detection and use: case study of fruit load × QTL interactions. J Exp Bot 65:11–22

    Article  CAS  PubMed  Google Scholar 

  • Lerceteau-Köhler E, Moing A, Guérin G, Renaud C, Maucourt M, Rolin D (2006) QTL analysis for sugars and organic acids in strawberry fruits. Acta Hortic 708:573–577

    Google Scholar 

  • Lerceteau-Köhler E, Moing A, Guérin G, Renaud C, Petit A, Rothan C, Denoyes B (2012) Genetic dissection of fruit quality traits in the octoploid strawberry highlights the role of homoeo-QTL in their control. Theor Appl Genet 124:1059–1077

    Article  PubMed Central  PubMed  Google Scholar 

  • Li M, Feng F, Cheng L (2012) Expression patterns of genes involved in sugar metabolism and accumulation during apple fruit development. PLoS ONE 7(3):e33055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liebhard R, Kellerhals M, Pfammatter W, Jertmini M, Gessler C (2003) Mapping quantitative physiological traits in apple (Malus × domestica Borkh.). Plant Mol Biol 52:511–526

    Article  CAS  PubMed  Google Scholar 

  • Longhi S, Moretto M, Velasco R, Costa F (2012) Comprehensive QTL mapping survey dissects the complex fruit texture physiology in apple (Malus × domestica Borkh.). J Exp Bot 63(3):1107–1121

    Article  CAS  PubMed  Google Scholar 

  • Longhi S, Hamblin MT, Trainotti L, Peace CP, Velasco R, Costa F (2013) A candidate gene based approach validates Md-PG1 as the main responsible for a QTL impacting fruit texture in apple (Malus × domestica Borkh). BMC Plant Biol 13:37 http://www.biomedcentral.com/1471-2229/13/37

  • Maliepaard C, Alston F, van Arkel G, Brown LM et al (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor Appl Genet 97:60–73

    Article  CAS  Google Scholar 

  • Paterson AH, Damon S, Hewitt JD, Zamir D, Rabinowith HD, Lincoln SE, Lander ES, Tanksley SD (1991) Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics 127(1):181–197

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paterson AH, Lin YR, Ki Z, Schertz KF, Doebley JF, Pinson SRM, Liu SC, Stansel JW, Irvine JE (1995) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269:1714–1718

    Article  CAS  PubMed  Google Scholar 

  • Peace CP, Luby J, van de Weg E, Bink M, Iezzoni AF (2014) A strategy for developing representative germplasm sets for systematic QTL validation, demonstrated for apple, peach and sweet cherry. Tree Genet Genomes 10:1679–1694

    Article  Google Scholar 

  • Potts SM, Khan MA, Han Y, Kushad MM, Korban SS (2014) Identification of quantitative trait loci (QTLs) for fruit quality traits in apple. Plant Mol Biol Rep 32:109–116

    Article  CAS  Google Scholar 

  • Quilot B, Wu BH, Kervella J, Genard M, Foulongue M, Moreau K (2004) QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild-related species P. davidiana. Theor Appl Genet 109:884–897

    Article  CAS  PubMed  Google Scholar 

  • Quilot B, Kervella J, Génard M, Lescourret F (2005) Analysing the genetic control of peach fruit quality through an ecophysiological model combined with a QTL approach. J Exp Bot 56(422):3083–3092

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. The R foundation for statistical computing, Vienna, Austria. http://www.R-project.org/

  • Rosyara U, Bink MCAM, van de Weg E, Zhang G, Wang D, Sebolt A, Dirlewanger E, Quero-Garcia J, Schuster M, Iezzoni A (2013) Fruit size QTL identification and the prediction of parental QTL genotypes and breeding values in multiple pedigreed populations of sweet cherry. Mol Breed 32(4):875–887

    Article  Google Scholar 

  • Rudell DR, Mattheis JP, Curry EA (2008) Prestorage ultraviolet-white light irradiation alters apple peel metabolome. J Agric Food Chem 56(3):1138–1147

    Article  CAS  PubMed  Google Scholar 

  • SAS Institute Inc (2012) What’s new in SAS® 9.3. SAS Institute Inc, Cary

    Google Scholar 

  • Shangguan L, Song C, Leng X, Kayesh E, Sun X, Fang J (2014) Mining and comparison of the genes encoding the key enzymes involved in sugar biosynthesis in apple, grape, and sweet orange. Sci Hortic 165:311–318

    Article  CAS  Google Scholar 

  • Sooriyapathirana SS, Khan A, Sebolt AM, Wang D, Bushakra JM, Wang KL, Allan AC, Gardiner SE, Chagné D, Iezzoni AF (2010) QTL analysis and candidate gene mapping for skin and flesh color in sweet cherry fruit (Prunus avium L.). Tree Genet Genomes 6:821–832

    Article  Google Scholar 

  • Suni M, Nyman M, Eriksson NA, Björk L, Björck I (2000) Carbohydrate composition and content of organic acids in fresh and stored apples. J Sci Food Agric 80:1538–1544

    Article  CAS  Google Scholar 

  • Tartarini S (1996) RAPD markers linked to the Vf gene for scab resistance in apple. Theor Appl Genet 92:803–810

    Article  CAS  PubMed  Google Scholar 

  • Ulrich D, Dunemann F (2012) Towards the development of molecular markers for apple volatiles. Flavour Fragr J 27:286–289

    Article  CAS  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M et al (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839

    Article  CAS  PubMed  Google Scholar 

  • Visser T, Schaap AA, de Vries DP (1968) Acidity and sweetness in apple and pear. Euphytica 17:153–167

    Article  Google Scholar 

  • Wang D, Karle R, Iezzoni AF (2000) QTL analysis of flower and fruit traits in sour cherry. Theor Appl Genet 100:535–544

    Article  CAS  Google Scholar 

  • Warner G (2013) Packer finds his niche. Good fruit grower. January 1st. http://www.goodfruit.com/Good-Fruit-Grower/January-1st-2013/Packer-finds-his-niche/

  • Yamaki S (1992) Alteration of cellular compartmentation and membrane permeability to sugars in immature and mature apple fruit. J Am Soc Hortic Sci 117:951–954

    CAS  Google Scholar 

  • Yamaki S (2010) Metabolism and accumulation of sugars translocated to fruit and their regulation. J Jpn Soc Hortic Sci 79:1–15

    Article  CAS  Google Scholar 

  • Zhang Q, Ma B, Li H, Chang Y, Han Y, Li J, Wei G, Zhao S, Khan M, Zhou Y, Gu C, Zhang X, Han Z, Korban S, Li S, Han Y (2012) Identification, characterization, and utilization of genome-wide simple sequence repeats to identify a QTL for acidity in apple. BMC Genom 13:537

    Article  Google Scholar 

  • Zhu Y, Barritt BH (2008) Md-ACS1 and Md-ACO1 genotyping of apple (Malus × domestica Borkh.) breeding parents and suitability for marker-assisted selection. Tree Genet Genomes 4:555–562

    Article  Google Scholar 

  • Zhu Z, Liu R, Li B, Tian S (2013) Characterisation of genes encoding key enzymes involved in sugar metabolism of apple fruit in controlled atmosphere storage. Food Chem 141:3323–3328

    Article  CAS  PubMed  Google Scholar 

  • Zini E, Biasioli F, Gasperi F, Mott D, Aprea E, Märk TD, Patocchi A, Gessler C, Komjanc M (2005) QTL mapping of volatile compounds in ripe apples detected by proton transfer reaction-mass spectrometry. Euphytica 145:269–279

    Article  CAS  Google Scholar 

Download references