Fertilization effects on microbial community composition and aggregate formation in saline‐alkaline soil - Plant and Soil
- ️Ding, Xiaodong
- ️Mon Mar 29 2021
References
Abiven S, Menasseri S, Angers DA, Leterme P (2007) Dynamics of aggregate stability and biological binding agents during decomposition of organic materials. Eur J Soil Sci 58(1):239–247. https://doi.org/10.1111/j.1365-2389.2006.00833.x
Ahmadi K, Zarebanadkouki M, Ahmed MA, Ferrarini A, Kuzyakov Y, Kostka SJ, Carminati A (2017) Rhizosphere engineering: innovative improvement of root enviroment. Rhizosphere 3:176–184. https://doi.org/10.1016/j.rhisph.2017.04.015
Blair GJ, Lefroy RD, Lisle L (1995) Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Aust J Agric Res 46(7):1459–1466. https://doi.org/10.1071/AR9951459
Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124(1–2):3–22. https://doi.org/10.1016/j.geoderma.2004.03.005
Cambardella CA, Elliott ET (1992) Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Sci Soc Am J 56(3):777–783. https://doi.org/10.2136/sssaj1992.03615995005600030017x
Caravaca F, Barea JM, Roldán A (2002) Synergistic influence of an arbuscular mycorrhizal fungus and organic amendment on Pistacia lentiscus L. seedlings afforested in a degraded semiarid soil. Soil Biol Biochem 34(8):1139–1145. https://doi.org/10.1016/S0038-0717(02)00047-0
Chaudhry V, Rehman A, Mishra A, Chauhan PS, Nautiyal CS (2012) Changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments. Microb Ecol 64(2):450–460. https://doi.org/10.1007/s00248-012-0025-y
Chen X, Liu M, Kuzyakov Y, Li WT, Liu J, Jiang CY, Wu M, Li ZP (2018) Incorporation of rice straw into dissolved organic matter and microbial biomass along a 100-year paddy soil chronosequence. Appl Soil Ecol 130:84–90. https://doi.org/10.1016/j.apsoil.2018.06.004
Chen J, Seven J, Zilla T, Dippold MA, Blagodatskaya E, Kuzyakov Y (2019) Microbial C: N: P stoichiometry and turnover depend on nutrients availability in soil: A 14 C, 15 N and 33P triple labelling study. Soil Biol Biochem 131:206–216. https://doi.org/10.1016/j.soilbio.2019.01.017
Du Y, Cui B, Zhang Q, Wang Z, Sun J, Niu W (2020) Effects of manure fertilizer on crop yield and soil properties in china: a meta-analysis. Catena 193:104617. https://doi.org/10.1016/j.catena.2020.104617
Duan Y, Xu M, Wang B, Yang X, Huang S, Gao S (2011) Long-term evaluation of manure application on maize yield and nitrogen use efficiency in China. Soil Sci Soc Am J 75:1561–1572. https://doi.org/10.2136/sssaj2010.0315
Fan X, Pedroli B, Liu G, Liu Q, Liu H, Shu L (2012) Soil salinity development in the Yellow River Delta in relation to groundwater dynamics. Land Degrad Dev 23:175–189. https://doi.org/10.1002/ldr.1071
Gould IJ, Quinton JN, Weigelt A, De Deyn GB, Bardgett RD (2016) Plant diversity and root traits benefit physical properties key to soil function in grasslands. Ecol Lett 19(9):1140–1149. https://doi.org/10.1111/ele.12652
Gunina A, Kuzyakov Y (2015) Sugars in soil and sweets for microorganisms: Review of origin, content, composition and fate. Soil Biol Biochem 90:87–100. https://doi.org/10.1016/j.soilbio.2015.07.021
Guo ZC, Zhang ZB, Zhou H, Rahman MT, Wang DZ, GuoXS, Li LJ, Peng XH (2018) Long-term animal manure application promoted biological binding agents but not soil aggregation in a Vertisol. Soil Till Res 180:232–237. https://doi.org/10.1016/j.still.2018.03.007
Han GL, Tang Y, Liu M, Zwieten LV, Yang XM, Yu CX, Wang HL, Song ZL (2020) Carbon-nitrogen isotope coupling of soil organic matter in a karst region under land use change, Southwest China. Agr Ecosyst Environ 301(1):107207. https://doi.org/10.1016/j.agee.2020.107027
Jiang PK, Xu QF, Xu ZH, Cao ZH (2006) Seasonal changes in soil labile organic carbon pools within a Phyllostachys praecox stand under high rate fertilization and winter mulch in subtropical China. For Ecol Manag 236(1):30–36. https://doi.org/10.1016/j.foreco.2006.06.010
Jiang Y, Qian H, Wang X, Chen L, Liu M, Li H, Sun B (2018) Nematodes and microbial community affect the sizes and turnover rates of organic carbon pools in soil aggregates. Soil Biol Biochem 119:22–31. https://doi.org/10.1016/j.soilbio.2018.01.001
Kong D, Miao C, Borthwick AG, Duan Q, Liu H, Sun Q, Ye A, Di Z, Gong W (2015) Evolution of the Yellow River Delta and its relationship with runoff and sediment load from 1983 to 2011. J Hydrol 520:157–167. https://doi.org/10.1016/j.jhydrol.2014.09.038
Kumar A, Dorodnikov M, Splettstößer T, Kuzyakov Y, Pausch J (2017) Effects of maize roots on aggregate stability and enzyme activities in soil. Geoderma 306:50–57. https://doi.org/10.1016/j.geoderma.2017.07.007
Lazcano C, Gómez-Brandón M, Revilla P, Domínguez J (2013) Short-term effects of organic and inorganic fertilizers on soil microbial community structure and function. Biol Fert Soils 49(6): 723–733. https://doi.org/10.1007/s00374-012-0761-7
Levy GJ, Torrento JR (1995) Clay dispersion and macroaggregate stability as affected by exchangeable potassium and sodium. Soil Sci 160(5): 352–358. https://doi.org/10.1097/00010694-199511000-00004
Li C, Li Y, Tang L (2013) The effects of long-term fertilization on the accumulation of organic carbon in the deep soil profile of an oasis farmland. Plant Soil 369:645–656. https://doi.org/10.1007/s11104-013-1605-4
Li C, Yan K, Tang L, Jia Z, Li Y (2014) Change in deep soil microbial communities due to long-term fertilization. Soil Biol Biochem 75:264–272. https://doi.org/10.1016/j.soilbio.2014.04.023
Li J, Li Z, Wang F, Zou B, Chen Y, Zhao J, Xia H (2015) Effects of nitrogen and phosphorus addition on soil microbial community in a secondary tropical forest of China. Biol Fert Soils 51(2):207–215. https://doi.org/10.1007/s00374-014-0964-1
Liao H, Zhang Y, Zuo Q, Du B, Chen W, Wei D, Huang Q (2018) Contrasting responses of bacterial and fungal communities to aggregate-size fractions and long-term fertilizations in soils of northeastern China. Sci Total Environ 635:784–792. https://doi.org/10.1016/j.scitotenv.2018.04.168
Liu Y, Ge T, Ye J, Liu S, Shibistova O, Wang P, Wang J, Li Y, Guggenberger G, Kuzyakov Y, Wu J (2019) Initial utilization of rhizodeposits with rice growth in paddy soils: Rhizosphere and N fertilization effects. Geoderma 338:30–39. https://doi.org/10.1016/j.geoderma.2018.11.040
Liu S, Wang J, Pu S, Blagodatskaya E, Kuzyakov Y, Razavi B (2020) Impact of manure on soil biochemical properties: a global synthesis. Sci Total Environ 745:141003. https://doi.org/10.1016/j.scitotenv.2020.141003
Luo X, Liu G, Xia Y, Chen L, Jiang Z, Zheng H, Wang Z (2017) Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta, China. J Soils Sediment 17(3):780–789. https://doi.org/10.1007/s11368-016-1361-1
Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen Y-J, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen SK, Ho CH, Irzyk GP, Jando SC, Alenquer MLI, Jarvie TP, Jirage KB, Kim J-B, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei ML, Li JF, Lohman KL, Lu HJ, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant RA, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380
Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular 939:1–19
Pabst H, Kühnel A, Kuzyakov Y (2013) Effect of land-use and elevation on microbial biomass and water extractable carbon in soils of Mt. Kilimanjaro ecosystems. Appl Soil Ecol 67:10–19. https://doi.org/10.1016/j.apsoil.2013.02.006
Qiu S, Gao H, Zhu P, Hou Y, Zhao S, Rong X, Zhang Y, He P, Christie P, Zhou W (2016) Changes in soil carbon and nitrogen pools in a Mollisol after long-term fallow or application of chemical fertilizers, straw or manures. Soil Tillage Res 163:255–265
Rowley MC, Stéphanie G, Éric PV (2018) Calcium-mediated stabilisation of soil organic carbon. Biogeochemistry 137(1–2):27–49
Saifullah U, Dahlawi S, Naeem A, Rengel Z, Naidu R (2018) Biochar application for the remediation of salt-affected soils: Challenges and opportunities. Sci Total Environ 625:320–335
Sheng H, Zhou P, Zhang Y, Kuzyakov Y, Zhou Q, Ge T, Wang C (2015) Loss of labile organic carbon from subsoil due to land-use changes in subtropical China. Soil Biol Biochem 88:148–157. https://doi.org/10.1016/j.soilbio.2015.05.015
Singh K (2016) Microbial and enzyme activities of saline and sodic soils. Land Degrad Dev 27(3):706–718. https://doi.org/10.1002/ldr.2385
Six J, Paustian K, Elliott ET, Combrink C (2000) Soil structure and organic matter I. Distribution of aggregate-size classes and aggregate-associated carbon. Soil Sci Soc Am J 64(2):681–689. https://doi.org/10.2136/sssaj2000.642681x
Six J, Bossuyt H, Degryze S, Denef K (2004) A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Till Res 79(1):7–31. https://doi.org/10.1016/j.still.2004.03.008
Tian J, Lou Y, Gao Y, Fang H, Liu S, Xu M, Blagodatskaya E, Kuzyakov Y (2017) Response of soil organic matter fractions and composition of microbial community to long-term organic and mineral fertilization. Biol Fert Soils 53(5):523–532. https://doi.org/10.1007/s00374-017-1189-x
Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19(6):703–707. https://doi.org/10.1016/0038-0717(87)90052-6
Walkley A (1935) An examination of methods for determining organic carbon and nitrogen in soils. J Agric Sci 25(4):598–609. https://doi.org/10.1017/S0021859600019687
Wang Y, Hu N, Ge TD, Kuzyakov Y, Wang ZL, Li Z, Tang Z, Chen Y, Wu C, Lou Y (2017) Soil aggregation regulates distributions of carbon, microbial community and enzyme activities after 23-year manure amendment. Appl Soil Ecol 111:65–72. https://doi.org/10.1016/j.apsoil.2016.11.015
Wang Y, Wang Z-L, Zhang Q, Hu N, Li Z, Lou Y, Li Y, Xue D, Chen Y, Wu C, Zou CB, Kuzyakov Y (2018) Long-term effects of nitrogen fertilization on aggregation and localization of carbon, nitrogen and microbial activities in soil. Sci Total Environ 624:1131–1139
Whitman T, Zhu Z, Lehmann J (2014) Carbon mineralizability determines interactive effects on mineralization of pyrogenic organic matter and soil organic carbon. Environ Sci Technol 48(23):13727–13734. https://doi.org/10.1021/es503331y
Wu L, Wei C, Zhang S, Wang Y, Kuzyakov Y, Ding X (2019) MgO-modified biochar increases phosphate retention and rice yields in saline-alkaline soil. J Clean Prod 235:901–909. https://doi.org/10.1016/j.jclepro.2019.07.043
Wu L, Zhang S, Ma R, Chen M, Wei W, Ding X (2021) Carbon sequestration under different organic amendments in saline-alkaline soils. Catena 196:104882. https://doi.org/10.1016/j.catena.2020.104882
Xie WJ, Chen QF, Wu LF, Yang HJ, Xu JK, Zhang YP (2020) Coastal saline soil aggregate formation and salt distribution are affected by straw and nitrogen application: A 4-year field study. Soil Till Res 198:104535. https://doi.org/10.1016/j.still.2019.104535
Yudina A, Kuzyakov Y (2019) Saving the face of soil aggregates. Global Change Biol 25:3574–3577. https://doi.org/10.1111/gcb.14779
Zang H, Xiao M, Wang Y, Ling N, Wu J, Ge T, Kuzyakov Y (2019) Allocation of assimilated carbon in paddies depending on rice age, chase time and N fertilization: Experiments with 13CO2 labelling and literature synthesis. Plant Soil 445:113–123. https://doi.org/10.1007/s11104-019-03995-1
Zhang X, Yang W, Xin X, Zhu A, Ding S (2020) Poor physical structural components restrict soil fertility and crop productivity for wheat-maize cropping. Nutr Cycl Agroecosyst 117(2):169–184. https://doi.org/10.1007/s10705-020-10063-z
Zheng H, Wang X, Luo X, Wang Z, Xing B (2018) Biochar-induced negative carbon mineralization priming effects in a coastal wetland soil: Roles of soil aggregation and microbial modulation. Sci Total Environ 610:951–960. https://doi.org/10.1016/j.scitotenv.2017.08.166