link.springer.com

An efficient and recyclable palygorskite-supported palladium catalyst for Suzuki–Miyaura coupling reactions in water at room-temperature - Reaction Kinetics, Mechanisms and Catalysis

  • ️Yang, Quanlu
  • ️Wed Nov 08 2023
  • Miyaura N, Yamada K, Suzuki A (1979) New stereospecifific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides. Tetrahedron Lett 20:3437–3440

    Article  Google Scholar 

  • Miyaura N, Suzuki A (1995) Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem Rev 95:2457–2483

    Article  CAS  Google Scholar 

  • Barder TE, Walker SD, Martinelli JR, Buchwald SL (2005) Catalysts for suzuki miyaura coupling processes: scope and studies of the effect of ligand structure. J Am Chem Soc 127:4685–4696

    Article  PubMed  CAS  Google Scholar 

  • Díaz-Sánchez M, Díaz-García D, Prashar S, Gómez-Ruiz S (2019) Palladium nanoparticles supported on silica, alumina or titania: greener alternatives for Suzuki-Miyaura and other C–C coupling reactions. Environ Chem Lett 17:1585–1602

    Article  Google Scholar 

  • Miyaura N (2002) Cross-coupling reactions: a practical guide. Top Curr Chem 219:11–59

    Article  CAS  Google Scholar 

  • Han DX, Bao ZB, Xing HB, Yang YW, Ren QL, Zhang ZG (2017) Fabrication of plasmonic Au-Pd alloy nanoparticles for photocatalytic Suzuki-Miyaura reactions under ambient conditions. Nanoscale 18:6026–6032

    Article  Google Scholar 

  • Mastalir Á, Molnár Á (2022) Coupling reactions induced by ionic palladium species deposited onto porous support materials. Coord Chem Rev 470:214696

    Article  CAS  Google Scholar 

  • Kuribara T, Nakajima M, Nemoto T (2022) A visible-light activated secondary phosphine oxide ligand enabling Pd-catalyzed radical cross-couplings. Nat Commun 13:4052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu S (2023) Polystyrene spheres-templated mesoporous carbonous frameworks implanted with cobalt nanoparticles for highly efficient electrochemical nitrate reduction to ammonia. Appl Catal B 323:122192

    Article  CAS  Google Scholar 

  • Choe K (2020) Fast and selective semihydrogenation of alkynes by palladium nanoparticles sandwiched in metal–organic frameworks. Angew Chem Int Ed 59:3650–3657

    Article  CAS  Google Scholar 

  • Jones W (2019) A comparison of photocatalytic reforming reactions of methanol and triethanolamine with Pd supported on titania and graphitic carbon nitride. Appl Catal B 240:373–379

    Article  CAS  Google Scholar 

  • Zhang S, Qian Y, Ahn W-S (2019) Catalytic dehydrogenation of formic acid over palladium nanoparticles immobilized on fibrous mesoporous silica KCC-1. Chin J Catal 40:1704–1712

    Article  Google Scholar 

  • Pei X (2022) Facile fabrication of highly dispersed Pd catalyst on nanoporous chitosan and its application in environmental catalysis. Carbohydr Polym 286:119313

    Article  PubMed  CAS  Google Scholar 

  • Xiao W-D (2022) The new identity of cellulose pulp: a green silver nanoparticles support for highly efficient catalytic hydrogenation of 4-nitrophenol. J Clean Prod 355:131833

    Article  CAS  Google Scholar 

  • Tukhani M, Panahi F, Khalafi-Nezhad A (2018) Supported palladium on magnetic nanoparticles–starch substrate (Pd-MNPSS): highly efficient magnetic reusable catalyst for C–C coupling reactions in water. ACS Sustain Chem Eng 6:1456–1467

    Article  CAS  Google Scholar 

  • Chen YS (2022) stability and bioaccessibility of icaritin-loaded pectin nanoparticle. Food Hydrocoll 129:107663

    Article  CAS  Google Scholar 

  • McNeil SJ, Sunderland MR, Samuel J (2017) Leighs the utilisation of wool as a catalyst and as a support for catalysts. Appl Catal A 541:120–140

    Article  CAS  Google Scholar 

  • Shang Wu, Jiang H, Zhang H, Zhao L, Yuan P, Zhang Y, Qiong Su, Wang Y, Lan Wu, Yang Q (2020) Immobilized Pd on Eggshell Membrane: a powerful and recyclable catalyst for Suzuki and Heck cross-coupling reactions in water. J Organomet Chem 925:121496

    Article  Google Scholar 

  • Amaya J, Moreno S, Molina R (2021) Heteropolyacids supported on clay minerals as bifunctional catalysts for the hydroconversion of decane. Appl Catal B 297:120464

    Article  CAS  Google Scholar 

  • Drits V, Sokolovam G (1971) Structure of palygorskite. Sov Phys Crystallogr 16:183–185

    Google Scholar 

  • Li X, Ni C, Lu X, Zuo S, Liu W, Yao C (2016) In situ fabrication of Ce1xLaxO2−δ/ palygorskite nanocomposites for efficient catalytic oxidation of CO: effect of La doping. Catal Sci Technol 6:545–554

    Article  CAS  Google Scholar 

  • Zhang H (2021) Preparation and characterization of mesoporous materials from low-grade palygorskite clay and its applied in composite phase change material. J Energy Storage 40:102791

    Article  Google Scholar 

  • Liu J (2021) Magnetic Fe3O4/attapulgite hybrids for Cd (II) adsorption: performance, mechanism and recovery. J Hazard Mater 412:125237

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Zhang J, Liu C, Liu J (2015) Pd–palygorskite catalysts: preparation, characterization and catalytic performance for the oxidation of styrene. Appl Clay Sci 105:150–155

    Article  Google Scholar 

  • Lycourghiotis S, Kordouli E, Sygellou L, Bourikas K, Kordulis C (2019) Nickel catalysts supported on palygorskite for transformation of waste cooking oils into green diesel. Appl Catal B 259:118059

    Article  CAS  Google Scholar 

  • Dai H, Xiao X, Huang L, Zhou C, Deng J (2021) Different catalytic behavior of Pd/Palygorskite catalysts for semi-hydrogenation of acetylene. Appl Clay Sci 211:106173

    Article  CAS  Google Scholar 

  • Wu S, Ma HC, Lei ZQ (2010) Mild and selective oxidation of alcohols using oxone® as an oxidant catalyzed by palygorskite in water. Synlett 18:2818–2822

    Google Scholar 

  • Yang Z-W (2015) Catalytic properties of palygorskite supported Ru and Pd for efficient oxidation of alcohols. Catal Commun 65:34–40

    Article  CAS  Google Scholar 

  • Ding N, Shang Wu, Qiang Hu, Liu J, PenghuiZhang SF, Zhao H, Zhang H, Yin F, Yang Q (2023) Arylation of indole at C2 catalyzed by palygorskite grafted covalent organic frameworks supported palladium catalyst. Appl Clay Sci 231:106754

    Article  CAS  Google Scholar 

  • Yang Q, Hongli Wu, Zhan H, Hou J, Gao M, Qiong Su, Shang Wu (2020) Attapulgite-anchored Pd complex catalyst: a highly active and reusable catalyst for C–C coupling reactions. Reac Kinet Mech Catal 129:283–295

    Article  CAS  Google Scholar 

  • Zhan H, Zhou R, Chen X, Yang Q, Jiang H, Qiong S, Wang Y, Li J, Lan W, Shang W (2019) Palygorskite-anchored Pd complexes catalyze the coupling reactions of pyrimidin-2-yl sulfonates. RSC Adv 9:30526–30533

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lakshmi Kantam M, Roy M, Sarabindu Roy B, Sreedhar SS, Madhavendra BMC, De RL (2019) Polyaniline supported palladium catalyzed Suzuki-Miyaura cross-coupling of bromo- and chloroarenes in water. Tetrahedron 63:8002–8009

    Article  Google Scholar 

  • Trzeciak AM, Augustyniak AW (2019) The role of palladium nanoparticles in catalytic C–C cross-coupling reactions. Coord Chem Rev 384:1–20

    Article  CAS  Google Scholar 

  • Cecilia JA (2018) Synthesis, characterization, uses and applications of porous clays heterostructures: a review. Chem Rec 18:1085–1104

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Wang A (2022) From structure evolution of palygorskite to functional material: a review. Microporous Mesoporous Mater 333:111765

    Article  CAS  Google Scholar 

  • Narayanan R, Tabor C, El-Sayed MA (2008) Can the observed changes in the size or shape of a colloidal nanocatalyst reveal the nanocatalysis mechanism type: homogeneous or heterogeneous? Top Catal 48:60–74

    Article  CAS  Google Scholar 

  • Chen J, Zhang J, Zhu D, Li T (2017) Novel polymer-supported phosphine palladium catalyst: one-pot synthesis from and application in Suzuki-Miyaura coupling reaction. J Porous Mater 24:847–853

    Article  CAS  Google Scholar