link.springer.com

Ammonia-Oxidizing Bacteria (AOB): opportunities and applications—a review - Reviews in Environmental Science and Bio/Technology

  • ️Eldyasti, Ahmed
  • ️Fri Mar 23 2018
  • Abeling U, Seyfried CF (1992) Anaerobic–aerobic treatment of high-strength ammonium wastewater-nitrogen removal via nitrite. Water Sci Technol 26:1007–1015

    Article  CAS  Google Scholar 

  • Abma WR, Schultz CE, Mulder JW, van der Star WRL, Strous M, Tokutomi T, van Loosdrecht MCM (2007) Full-scale granular sludge Anammox process. Water Sci Technol 55:27. https://doi.org/10.2166/wst.2007.238

    Article  CAS  Google Scholar 

  • Ahn JH, Yu R, Chandran K (2008) Distinctive microbial ecology and biokinetics of autotrophic ammonia and nitrite oxidation in a partial nitrification bioreactor. Biotechnol Bioeng 100:1078–1087. https://doi.org/10.1002/bit.21863

    Article  CAS  Google Scholar 

  • Alleman JE (1985) Elevated nitrite occurrence in biological wastewater treatment systems. Water Sci Technol 17:409–419

    Article  CAS  Google Scholar 

  • Anthonisen AC, Loehr RC, Prakasam TBS, Srinath EG (1976) Inhibition of nitrification by ammonia and nitrous acid. J Water Pollut Control Fed 48:835–852

    CAS  Google Scholar 

  • Aoi Y, Miyoshi T, Okamoto T, Tsuneda S, Hirata A, Kitayama A, Nagamune T (2000) Microbial ecology of nitrifying bacteria in wastewater treatment process examined by fluorescence in situ hybridization. J Biosci Bioeng 90:234–240. https://doi.org/10.1016/S1389-1723(00)80075-4

    Article  CAS  Google Scholar 

  • Arp D, Sayavedra-Soto L, Hommes N (2002) Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas europaea. Arch Microbiol 178:250–255. https://doi.org/10.1007/s00203-002-0452-0

    Article  CAS  Google Scholar 

  • Bae W, Baek S, Chung J, Lee Y (2001) Optimal operational factors for nitrite accumulation in batch reactors. Biodegradation 12:359–366

    Article  CAS  Google Scholar 

  • Bagchi S, Biswas R, Roychoudhury K, Nandy T (2009) Stable partial nitrification in an up-flow fixed-bed bioreactor under an oxygen-limiting environment. Environ Eng Sci 26:1309–1318

    Article  CAS  Google Scholar 

  • Balmelle B, Nguyen KM, Capdeville B, Cornier JC, Deguin A (1992) Study of factors controlling nitrite build-up in biological processes for water nitrification. Water Sci Technol 26:1017–1025

    Article  CAS  Google Scholar 

  • Beccari M, Passino R, Ramadori R, Tandoi V (1983) Kinetics of dissimilatory nitrate and nitrite reduction in suspended growth culture. J Water Pollut Control Fed 55:58–64

    CAS  Google Scholar 

  • Blackburne R, Vadivelu VM, Yuan Z, Keller J (2007) Determination of growth rate and yield of nitrifying bacteria by measuring carbon dioxide uptake rate. Water Environ Res 79:2437–2445. https://doi.org/10.2175/106143007X212139

    Article  CAS  Google Scholar 

  • Bock E, Koops H-P, Harms H (1986) Cell biology of nitrifying bacteria. Nitrification https://ci.nii.ac.jp/naid/10020227672/en/

  • Boonaert CJ-P, Dupont-Gillain CC, Dengis PB, Dufrêne YF, Rouxhet PG (2002) Cell separation, flocculation. Encyclopedia of bioprocess technology. Wiley, Hoboken

    Book  Google Scholar 

  • Bougard D, Bernet N, Chèneby D, Delgenès J-P (2006) Nitrification of a high-strength wastewater in an inverse turbulent bed reactor: effect of temperature on nitrite accumulation. Process Biochem 41:106–113. https://doi.org/10.1016/j.procbio.2005.03.064

    Article  CAS  Google Scholar 

  • Burrell PC, Phalen CM, Hovanec TA (2001) Identification of bacteria responsible for ammonia oxidation in freshwater aquaria. Appl Environ Microbiol 67:5791–5800. https://doi.org/10.1128/AEM.67.12.5791-5800.2001

    Article  CAS  Google Scholar 

  • Canziani R, Emondi V, Garavaglia M, Malpei F, Pasinetti E, Buttiglieri G (2006) Effect of oxygen concentration on biological nitrification and microbial kinetics in a cross-flow membrane bioreactor (MBR) and moving-bed biofilm reactor (MBBR) treating old landfill leachate. J Membr Sci 286:202–212. https://doi.org/10.1016/j.memsci.2006.09.044

    Article  CAS  Google Scholar 

  • Carrera J, Jubany I, Carvallo L, Chamy R, Lafuente J (2004) Kinetic models for nitrification inhibition by ammonium and nitrite in a suspended and an immobilised biomass systems. Process Biochem 39:1159–1165. https://doi.org/10.1016/S0032-9592(03)00214-0

    Article  CAS  Google Scholar 

  • Carvallo L, Carrera J, Chamy R (2002) Nitrifying activity monitoring and kinetic parameters determination in a biofilm airlift reactor by respirometry. Biotechnol Lett 24:2063–2066. https://doi.org/10.1023/A:1021375523879

    Article  CAS  Google Scholar 

  • Chandran K, Stein LY, Klotz MG, van Loosdrecht MCM (2011) Nitrous oxide production by lithotrophic ammonia-oxidizing bacteria and implications for engineered nitrogen-removal systems. Biochem Soc Trans 39:1832–1837. https://doi.org/10.1042/BST20110717

    Article  CAS  Google Scholar 

  • Chiellini C, Munz G, Petroni G, Lubello C, Mori G, Verni F, Vannini C (2013) Characterization and comparison of bacterial communities selected in conventional activated sludge and membrane bioreactor pilot plants: a focus on nitrospira and planctomycetes bacterial phyla. Curr Microbiol 67:77–90. https://doi.org/10.1007/s00284-013-0333-6

    Article  CAS  Google Scholar 

  • Choi J, Ahn Y (2014) Comparative performance of air-lift partial nitritation processes with attached growth and suspended growth without biomass retention. Environ Technol 35:1328–1337. https://doi.org/10.1080/09593330.2013.868037

    Article  CAS  Google Scholar 

  • Clauwaert P, Roels J, Thoeye C, De G, Van DS (2010) Evaluation of the environmental impact of sewage treatment with nutrient removal by means of life cycle analysis (LCA). WT-Afvalwater 10:186–195

    Google Scholar 

  • Daalkhaijav U, Nemati M (2014) Ammonia loading rate: an effective variable to control partial nitrification and generate the anaerobic ammonium oxidation influent. Environ Technol 35:523–531. https://doi.org/10.1080/09593330.2013.796006

    Article  CAS  Google Scholar 

  • Daebel H, Manser R, Gujer W (2007) Exploring temporal variations of oxygen saturation constants of nitrifying bacteria. Water Res 41:1094–1102. https://doi.org/10.1016/j.watres.2006.11.011

    Article  CAS  Google Scholar 

  • Dan P (2014) Determination of ammonia oxidation bacteria kinetics in partial nitritation process using respirometric method. J Sci Technol 52:3A

    Google Scholar 

  • Dawas-Massalha A, Gur-Reznik S, Lerman S, Sabbah I, Dosoretz CG (2014) Co-metabolic oxidation of pharmaceutical compounds by a nitrifying bacterial enrichment. Bioresour Technol 167:336–342. https://doi.org/10.1016/j.biortech.2014.06.003

    Article  CAS  Google Scholar 

  • Downing LS, Nerenberg R (2008) Effect of oxygen gradients on the activity and microbial community structure of a nitrifying, membrane-aerated biofilm. Biotechnol Bioeng 101:1193–1204. https://doi.org/10.1002/bit.22018

    Article  CAS  Google Scholar 

  • Durán U, Val del Río A, Campos JL, Mosquera-Corral A, Méndez R (2014) Enhanced ammonia removal at room temperature by pH controlled partial nitrification and subsequent anaerobic ammonium oxidation. Environ Technol 35:383–390. https://doi.org/10.1080/09593330.2013.829110

    Article  CAS  Google Scholar 

  • Emmerson RHC, Morse GK, Lester JN, Edge DR (1995) The life-cycle analysis of small-scale sewage-treatment processes. Water Environ J 9:317–325. https://doi.org/10.1111/j.1747-6593.1995.tb00945.x

    Article  CAS  Google Scholar 

  • Fudala-Ksiazek S, Luczkiewicz A, Fitobor K, Olanczuk-Neyman K (2014) Nitrogen removal via the nitrite pathway during wastewater co-treatment with ammonia-rich landfill leachates in a sequencing batch reactor. Environ Sci Pollut Res 21:7307–7318. https://doi.org/10.1007/s11356-014-2641-1

    Article  CAS  Google Scholar 

  • Gabarró J, Ganigué R, Gich F, Ruscalleda M, Balaguer MD, Colprim J (2012) Effect of temperature on AOB activity of a partial nitritation SBR treating landfill leachate with extremely high nitrogen concentration. Bioresour Technol 126:283–289. https://doi.org/10.1016/j.biortech.2012.09.011

    Article  CAS  Google Scholar 

  • Galí A, Dosta J, Macé S, Mata-Alvarez J (2007a) Comparison of reject water treatment with nitrification/denitrification via nitrite in SBR and SHARON chemostat process. Environ Technol 28:173–176. https://doi.org/10.1080/09593332808618777

    Article  Google Scholar 

  • Galí A, Dosta J, van Loosdrecht MCM, Mata-Alvarez J (2007b) Two ways to achieve an anammox influent from real reject water treatment at lab-scale: Partial SBR nitrification and SHARON process. Process Biochem 42:715–720. https://doi.org/10.1016/j.procbio.2006.12.002

    Article  CAS  Google Scholar 

  • Ganigué R, López H, Balaguer MD, Colprim J (2007) Partial ammonium oxidation to nitrite of high ammonium content urban landfill leachates. Water Res 41:3317–3326. https://doi.org/10.1016/j.watres.2007.04.027

    Article  CAS  Google Scholar 

  • Gao D, Peng Y, Wu W-M (2010) Kinetic model for biological nitrogen removal using shortcut nitrification–denitrification process in sequencing batch reactor. Environ Sci Technol 44:5015–5021. https://doi.org/10.1021/es100514x

    Article  CAS  Google Scholar 

  • Ge X, Yang L, Sheets JP, Yu Z, Li Y (2014) Biological conversion of methane to liquid fuels: Status and opportunities. Biotechnol Adv 32:1460–1475. https://doi.org/10.1016/j.biotechadv.2014.09.004

    Article  CAS  Google Scholar 

  • Ge S, Wang S, Yang X, Qiu S, Li B, Peng Y (2015) Detection of nitrifiers and evaluation of partial nitrification for wastewater treatment: A review. Chemosphere 140:85–98. https://doi.org/10.1016/j.chemosphere.2015.02.004

    Article  CAS  Google Scholar 

  • Geets J, Boon N, Verstraete W (2006) Strategies of aerobic ammonia-oxidizing bacteria for coping with nutrient and oxygen fluctuations: strategies of AOB for coping with nutrient and oxygen fluctuations. FEMS Microbiol Ecol 58:1–13. https://doi.org/10.1111/j.1574-6941.2006.00170.x

    Article  CAS  Google Scholar 

  • Glass C, Silverstein J, Oh J (1997) Inhibition of denitrification in activated sludge by nitrite. Water Environ Res 69:1086–1093

    Article  CAS  Google Scholar 

  • González-Martínez A, Calderón K, Albuquerque A, Hontoria E, González-López J, Guisado IM, Osorio F (2013) Biological and technical study of a partial-SHARON reactor at laboratory scale: effect of hydraulic retention time. Bioprocess Biosyst Eng 36:173–184. https://doi.org/10.1007/s00449-012-0772-7

    Article  CAS  Google Scholar 

  • Guisasola A, Jubany I, Baeza JA, Carrera J, Lafuente J (2005) Respirometric estimation of the oxygen affinity constants for biological ammonium and nitrite oxidation. J Chem Technol Biotechnol 80:388–396. https://doi.org/10.1002/jctb.1202

    Article  CAS  Google Scholar 

  • Guo J-H, Peng Y-Z, Peng C-Y, Wang S-Y, Chen Y, Huang H-J, Sun Z-R (2010) Energy saving achieved by limited filamentous bulking sludge under low dissolved oxygen. Bioresour Technol 101:1120–1126. https://doi.org/10.1016/j.biortech.2009.09.051

    Article  CAS  Google Scholar 

  • Hanaki K, Wantawin C, Ohgaki S (1990) Nitrification at low levels of dissolved oxygen with and without organic loading in a suspended-growth reactor. Water Res 24:297–302

    Article  CAS  Google Scholar 

  • Hauck M, Maalcke-Luesken FA, Jetten MSM, Huijbregts MAJ (2016) Removing nitrogen from wastewater with side stream anammox: what are the trade-offs between environmental impacts? Resour Conserv Recycl 107:212–219. https://doi.org/10.1016/j.resconrec.2015.11.019

    Article  Google Scholar 

  • He Y, Tao W, Wang Z, Shayya W (2012) Effects of pH and seasonal temperature variation on simultaneous partial nitrification and anammox in free-water surface wetlands. J Environ Manage 110:103–109. https://doi.org/10.1016/j.jenvman.2012.06.009

    Article  CAS  Google Scholar 

  • Heijnen JJ (1997) Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor. Biotechnol Bioeng 53:168–178

    Article  Google Scholar 

  • Heijnen JJ, Mulder A, Enger W, Hoeks F (1989) Review on the application of anaerobic fluidized bed reactors in waste-water treatment. Chem Eng J 41:B37–B50. https://doi.org/10.1016/0300-9467(89)80029-2

    Article  CAS  Google Scholar 

  • Hellinga C, Schellen AAJC, Mulder JW, van Loosdrecht MCM, Heijnen JJ (1998) The SHARON process: an innovative method for nitrogen removal from ammonium-rich waste water. Water Sci Technol 37:135–142

    Article  CAS  Google Scholar 

  • Hellinga C, van Loosdrecht MCM, Heijnen JJ (1999) Model based design of a novel process for nitrogen removal from concentrated flows. Math Comput Model Dyn Syst 5:351–371. https://doi.org/10.1076/mcmd.5.4.351.3678

    Article  Google Scholar 

  • Hooper AB, Vannelli T, Bergmann DJ, Arciero DM (1997) Enzymology of the oxidation of ammonia to nitrite by bacteria. Antonie Van Leeuwenhoek 71:59–67

    Article  CAS  Google Scholar 

  • Hospido A, Moreira MT, Feijoo G (2008) A comparison of municipal wastewater treatment plants for big centres of population in Galicia (Spain). Int J Life Cycle Assess 13:57. https://doi.org/10.1065/lca2007.03.314

    Article  CAS  Google Scholar 

  • Hyman MR, Wood PM (1983) Methane oxidation by Nitrosomonas europaea. Biochem J 212:31–37

    Article  CAS  Google Scholar 

  • Jaroszynski LW, Oleszkiewicz JA (2011) Autotrophic ammonium removal from reject water: partial nitrification and anammox in one-reactor versus two-reactor systems. Environ Technol 32:289–294. https://doi.org/10.1080/09593330.2010.497500

    Article  CAS  Google Scholar 

  • Jones RD, Morita RY (1983) Methane oxidation by Nitrosococcus oceanus and Nitrosomonas europaea. Appl Environ Microbiol 45:401–410

    CAS  Google Scholar 

  • Jones RM, Dold PL, Takács I, Chapman K, Wett B, Murthy S, Shaughnessy M (2007) Simulation for operation and control of reject water treatment processes. Proc Water Environ Fed 2007:4357–4372

    Article  Google Scholar 

  • Joss A, Salzgeber D, Eugster J, König R, Rottermann K, Burger S, Fabijan P, Leumann S, Mohn J, Siegrist H (2009) Full-scale nitrogen removal from digester liquid with partial nitritation and anammox in one SBR [WWW Document]. Environ Sci Technol. https://doi.org/10.1021/es900107w

    Article  Google Scholar 

  • Jubany I, Carrera J, Lafuente J, Baeza JA (2008) Start-up of a nitrification system with automatic control to treat highly concentrated ammonium wastewater: experimental results and modeling. Chem Eng J 144:407–419. https://doi.org/10.1016/j.cej.2008.02.010

    Article  CAS  Google Scholar 

  • Kampschreur MJ, Picioreanu C, Tan N, Kleerebezem R, Jetten MSM, van Loosdrecht MCM (2007) Unraveling the source of nitric oxide emission during nitrification. Proc Water Environ Fed 2007:843–860. https://doi.org/10.2175/193864707787976470

    Article  Google Scholar 

  • Keen GA, Prosser JI (1987) Steady state and transient growth of autotrophic nitrifying bacteria. Arch Microbiol 147:73–79

    Article  CAS  Google Scholar 

  • Keener WK, Arp DJ (1994) Transformations of aromatic compounds by Nitrosomonas europaea. Appl Environ Microbiol 60:1914–1920

    CAS  Google Scholar 

  • Kim J, Lee B (2011) Effect of temperature on nitrogen removal and microbial community composition in nitrifying biofilm reactors. In: 2011 6th international forum on strategic technology (IFOST). IEEE, pp 476–479

  • Kim J-H, Guo X, Park H-S (2008) Comparison study of the effects of temperature and free ammonia concentration on nitrification and nitrite accumulation. Process Biochem 43:154–160. https://doi.org/10.1016/j.procbio.2007.11.005

    Article  CAS  Google Scholar 

  • Kishida N, Kim J-H, Chen M, Sasaki H, Sudo R (2003) Effectiveness of oxidation-reduction potential and pH as monitoring and control parameters for nitrogen removal in swine wastewater treatment by sequencing batch reactors. J Biosci Bioeng 96:285–290. https://doi.org/10.1016/S1389-1723(03)80195-0

    Article  CAS  Google Scholar 

  • Koops H-P, Pommerening-Röser A (2001) Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiol Ecol 37:1–9

    Article  CAS  Google Scholar 

  • Kouba V, Vejmelkova D, Proksova E, Wiesinger H, Concha M, Dolejs P, Hejnic J, Jenicek P, Bartacek J (2017) High-rate partial nitritation of municipal wastewater after psychrophilic anaerobic pretreatment. Environ Sci Technol 51:11029–11038. https://doi.org/10.1021/acs.est.7b02078

    Article  CAS  Google Scholar 

  • Kowalchuk GA, Stephen JR (2001) Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu Rev Microbiol 55:485–529

    Article  CAS  Google Scholar 

  • Lackner S, Terada A, Horn H, Henze M, Smets BF (2010) Nitritation performance in membrane-aerated biofilm reactors differs from conventional biofilm systems. Water Res 44:6073–6084. https://doi.org/10.1016/j.watres.2010.07.074

    Article  CAS  Google Scholar 

  • Lackner S, Gilbert EM, Vlaeminck SE, Joss A, Horn H, van Loosdrecht MCM (2014) Full-scale partial nitritation/anammox experiences—an application survey. Water Res 55:292–303. https://doi.org/10.1016/j.watres.2014.02.032

    Article  CAS  Google Scholar 

  • Law Y, Ye L, Pan Y, Yuan Z (2012) Nitrous oxide emissions from wastewater treatment processes. Philos Trans R Soc B Biol Sci 367:1265–1277. https://doi.org/10.1098/rstb.2011.0317

    Article  CAS  Google Scholar 

  • Lebrero R, Arellano-Garcia L, Su Y-C, Chandran K (2016) Metabolism and growth of autotrophic ammonia oxidizing bacteria with hydroxylamine as the sole energy and nitrogen source. Proc Water Environ Fed 2016:315–318

    Article  Google Scholar 

  • Leyva-Díaz JC, González-Martínez A, González-López J, Muñío MM, Poyatos JM (2015) Kinetic modeling and microbiological study of two-step nitrification in a membrane bioreactor and hybrid moving bed biofilm reactor–membrane bioreactor for wastewater treatment. Chem Eng J 259:692–702. https://doi.org/10.1016/j.cej.2014.07.136

    Article  CAS  Google Scholar 

  • Li A-J, Li X-Y, Quan X-C, Yang Z-F (2013a) Aerobic sludge granulation for partial nitrification of ammonia-rich inorganic wastewater. Environ Eng Manag J EEMJ 12:1375–1380

    Article  CAS  Google Scholar 

  • Li J, Yu D, Zhang P (2013b) Partial nitrification in a sequencing batch reactor treating acrylic fiber wastewater. Biodegradation 24:427–435. https://doi.org/10.1007/s10532-012-9599-9

    Article  CAS  Google Scholar 

  • Liang Z, Han Z, Yang S, Liang X, Du P, Liu G, Yang Y (2011) A control strategy of partial nitritation in a fixed bed bioflim reactor. Bioresour Technol 102:710–715. https://doi.org/10.1016/j.biortech.2010.08.054

    Article  CAS  Google Scholar 

  • Liu G, Wang J (2013) Role of solids retention time on complete nitrification: mechanistic understanding and modeling. J Environ Eng 140:48–56. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000779

    Article  CAS  Google Scholar 

  • Liu J, Tian Y, Wang D, Lu Y, Zhang J, Zuo W (2014) Quantitative analysis of ammonia-oxidizing bacteria in a combined system of MBR and worm reactors treating synthetic wastewater. Bioresour Technol 174:294–301. https://doi.org/10.1016/j.biortech.2014.09.082

    Article  CAS  Google Scholar 

  • Liu X, Kim M, Nakhla G (2016) Operational conditions for successful partial nitrification in a sequencing batch reactor (SBR) based on process kinetics. Environ Technol. https://doi.org/10.1080/09593330.2016.1209246

    Article  Google Scholar 

  • Logemann S, Schantl J, Bijvank S, van Loosdrecht M, Kuenen JG, Jetten M (1998) Molecular microbial diversity in a nitrifying reactor system without sludge retention. FEMS Microbiol Ecol 27:239–249

    Article  CAS  Google Scholar 

  • Magrí A, Corominas L, López H, Campos E, Balaguer M, Colprim J, Flotats X (2007) A model for the simulation of the SHARON process: pH as a key factor. Environ Technol 28:255–265. https://doi.org/10.1080/09593332808618791

    Article  Google Scholar 

  • Manser R, Gujer W, Siegrist H (2005) Consequences of mass transfer effects on the kinetics of nitrifiers. Water Res 39:4633–4642. https://doi.org/10.1016/j.watres.2005.09.020

    Article  CAS  Google Scholar 

  • Mao N, Ren H, Geng J, Ding L, Xu K (2017) Engineering application of anaerobic ammonium oxidation process in wastewater treatment. World J Microbiol Biotechnol. https://doi.org/10.1007/s11274-017-2313-7

    Article  Google Scholar 

  • Meinhold J, Arnold E, Isaacs S (1999) Effect of nitrite on anoxic phosphate uptake in biological phosphorus removal activated sludge. Water Res 33:1871–1883

    Article  CAS  Google Scholar 

  • Melcer H (2004) Methods for wastewater characterization in activated sludge modelling. IWA Publishing, London

    Google Scholar 

  • Milia S, Cappai G, Perra M, Carucci A (2012) Biological treatment of nitrogen-rich refinery wastewater by partial nitritation (SHARON) process. Environ Technol 33:1477–1483. https://doi.org/10.1080/09593330.2012.660651

    Article  CAS  Google Scholar 

  • Mishima K, Nakamura M (1991) Self-immobilization of aerobic activated sludge—a pilot study of the aerobic upflow sludge blanket process in municipal sewage treatment. Water Sci Technol 23:981–990

    Article  CAS  Google Scholar 

  • Mohammed RN, Abu-Alhail S, Xi-wu L (2014) Long-term operation of a novel pilot-scale six tanks alternately operating activated sludge process in treating domestic wastewater. Environ Technol 35:1874–1885. https://doi.org/10.1080/09593330.2014.885068

    Article  CAS  Google Scholar 

  • Mulder A, Van de Graaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol 16:177–183

    Article  CAS  Google Scholar 

  • Mulder JW, Van Loosdrecht MCM, Hellinga C, Van Kempen R (2001) Full-scale application of the SHARON process for treatment of rejection water of digested sludge dewatering. Water Sci Technol 43:127–134

    Article  CAS  Google Scholar 

  • Muñoz-Palazon B, Rodriguez-Sanchez A, Castellano-Hinojosa A, Gonzalez-Lopez J, van Loosdrecth MCM, Vahala R, Gonzalez-Martinez A (2018) Quantitative and qualitative studies of microorganisms involved in full-scale autotrophic nitrogen removal performance. AIChE J 64:457–467. https://doi.org/10.1002/aic.15925

    Article  CAS  Google Scholar 

  • Munz G, Mori G, Vannini C, Lubello C (2010) Kinetic parameters and inhibition response of ammonia- and nitrite-oxidizing bacteria in membrane bioreactors and conventional activated sludge processes. Environ Technol 31:1557–1564. https://doi.org/10.1080/09593331003793828

    Article  CAS  Google Scholar 

  • Nicolella C, Van Loosdrecht MCM, Heijnen JJ (2000) Wastewater treatment with particulate biofilm reactors. J Biotechnol 80:1–33

    Article  CAS  Google Scholar 

  • Nicolella C, van Loosdrecht MCM, Heijnen JJ (2010) ChemInform abstract: wastewater treatment with particulate biofilm reactors. ChemInform. https://doi.org/10.1002/chin.200036299

    Article  Google Scholar 

  • Otawa K, Asano R, Ohba Y, Sasaki T, Kawamura E, Koyama F, Nakamura S, Nakai Y (2006) Molecular analysis of ammonia-oxidizing bacteria community in intermittent aeration sequencing batch reactors used for animal wastewater treatment. Environ Microbiol 8:1985–1996. https://doi.org/10.1111/j.1462-2920.2006.01078.x

    Article  CAS  Google Scholar 

  • Pambrun V, Paul E, Spérandio M (2006) Modeling the partial nitrification in sequencing batch reactor for biomass adapted to high ammonia concentrations. Biotechnol Bioeng 95:120–131. https://doi.org/10.1002/bit.21008

    Article  CAS  Google Scholar 

  • Peng Y, Zhu G (2006) Biological nitrogen removal with nitrification and denitrification via nitrite pathway. Appl Microbiol Biotechnol 73:15–26. https://doi.org/10.1007/s00253-006-0534-z

    Article  CAS  Google Scholar 

  • Pérez J, Costa E, Kreft J-U (2009) Conditions for partial nitrification in biofilm reactors and a kinetic explanation. Biotechnol Bioeng 103:282–295. https://doi.org/10.1002/bit.22249

    Article  CAS  Google Scholar 

  • Purkhold U, Pommerening-Röser A, Juretschko S, Schmid MC, Koops H-P, Wagner M (2000) Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol 66:5368–5382

    Article  CAS  Google Scholar 

  • Rasche ME, Hicks RE, Hyman MR, Arp DJ (1990) Oxidation of monohalogenated ethanes and n-chlorinated alkanes by whole cells of Nitrosomonas europaea. J Bacteriol 172:5368–5373. https://doi.org/10.1128/jb.172.9.5368-5373.1990

    Article  CAS  Google Scholar 

  • Rodriguez-Sanchez A, Gonzalez-Martinez A, Martinez-Toledo M, Garcia-Ruiz M, Osorio F, Gonzalez-Lopez J (2014) The effect of influent characteristics and operational conditions over the performance and microbial community structure of partial nitritation reactors. Water 6:1905–1924. https://doi.org/10.3390/w6071905

    Article  CAS  Google Scholar 

  • Roh H, Subramanya N, Zhao F, Yu C-P, Sandt J, Chu K-H (2009) Biodegradation potential of wastewater micropollutants by ammonia-oxidizing bacteria. Chemosphere 77:1084–1089. https://doi.org/10.1016/j.chemosphere.2009.08.049

    Article  CAS  Google Scholar 

  • Rongsayamanont C, Limpiyakorn T, Law B, Khan E (2010) Relationship between respirometric activity and community of entrapped nitrifying bacteria: implications for partial nitrification. Enzyme Microb Technol 46:229–236. https://doi.org/10.1016/j.enzmictec.2009.10.014

    Article  CAS  Google Scholar 

  • Rowan AK, Snape JR, Fearnside D, Barer MR, Curtis TP, Head IM (2003) Composition and diversity of ammonia-oxidising bacterial communities in wastewater treatment reactors of different design treating identical wastewater. FEMS Microbiol Ecol 43:195–206

    Article  CAS  Google Scholar 

  • Rusten B, Eikebrokk B, Ulgenes Y, Lygren E (2006) Design and operations of the Kaldnes moving bed biofilm reactors. Aquac Eng 34:322–331. https://doi.org/10.1016/j.aquaeng.2005.04.002

    Article  Google Scholar 

  • Saito T, Brdjanovic D, van Loosdrecht MCM (2004) Effect of nitrite on phosphate uptake by phosphate accumulating organisms. Water Res 38:3760–3768. https://doi.org/10.1016/j.watres.2004.05.023

    Article  CAS  Google Scholar 

  • Schaubroeck T, De Clippeleir H, Weissenbacher N, Dewulf J, Boeckx P, Vlaeminck SE, Wett B (2015) Environmental sustainability of an energy self-sufficient sewage treatment plant: improvements through DEMON and co-digestion. Water Res 74:166–179. https://doi.org/10.1016/j.watres.2015.02.013

    Article  CAS  Google Scholar 

  • Schmidt I, Sliekers O, Schmid M, Bock E, Fuerst J, Kuenen JG, Jetten MSM, Strous M (2003) New concepts of microbial treatment processes for the nitrogen removal in wastewater. FEMS Microbiol Rev 27:481–492. https://doi.org/10.1016/S0168-6445(03)00039-1

    Article  CAS  Google Scholar 

  • Schramm A, de Beer D, van den Heuvel JC, Ottengraf S, Amann R (1999) Microscale distribution of populations and activities of Nitrosospira and Nitrospira spp. along a macroscale gradient in a nitrifying bioreactor: quantification by in situ hybridization and the use of microsensors. Appl Environ Microbiol 65:3690–3696

    CAS  Google Scholar 

  • Shen L, Yao Y, Meng F (2014) Reactor performance and microbial ecology of a nitritation membrane bioreactor. J Membr Sci 462:139–146. https://doi.org/10.1016/j.memsci.2014.03.034

    Article  CAS  Google Scholar 

  • Sin G, Kaelin D, Kampschreur MJ, Takács I, Wett B, Gernaey KV, Rieger L, Siegrist H, van Loosdrecht MCM (2008) Modelling nitrite in wastewater treatment systems: a discussion of different modelling concepts. Water Sci Technol 58:1155. https://doi.org/10.2166/wst.2008.485

    Article  CAS  Google Scholar 

  • Sinha B, Annachhatre AP (2007) Partial nitrification—operational parameters and microorganisms involved. Rev Environ Sci Biotechnol 6:285–313. https://doi.org/10.1007/s11157-006-9116-x

    Article  CAS  Google Scholar 

  • Soliman M, Eldyasti A (2016) Development of partial nitrification as a first step of nitrite shunt process in a sequential batch reactor (SBR) using ammonium oxidizing bacteria (AOB) controlled by mixing regime. Bioresour Technol 221:85–95. https://doi.org/10.1016/j.biortech.2016.09.023

    Article  CAS  Google Scholar 

  • Soliman M, Eldyasti A (2017) Long-term dynamic and pseudo-state modeling of complete partial nitrification process at high nitrogen loading rates in a sequential batch reactor (SBR). Bioresour Technol 233:382–390. https://doi.org/10.1016/j.biortech.2017.02.108

    Article  CAS  Google Scholar 

  • Stenstrom MK, Poduska RA (1980) The effect of dissolved oxygen concentration on nitrification. Water Res 14:643–649

    Article  CAS  Google Scholar 

  • Sui Q, Liu C, Dong H, Zhu Z (2014) Effect of ammonium nitrogen concentration on the ammonia-oxidizing bacteria community in a membrane bioreactor for the treatment of anaerobically digested swine wastewater. J Biosci Bioeng 118:277–283. https://doi.org/10.1016/j.jbiosc.2014.02.017

    Article  CAS  Google Scholar 

  • Suzuki I, Dular U, Kwok SC (1974) Ammonia or ammonium ion as substrate for oxidation by Nitrosomonas europaea cells and extracts. J Bacteriol 120:556–558

    CAS  Google Scholar 

  • Taher E, Chandran K (2013) High-rate, high-yield production of methanol by ammonia-oxidizing bacteria. Environ Sci Technol. https://doi.org/10.1021/es3042912

    Article  Google Scholar 

  • Tanaka H, Dunn IJ (1982) Kinetics of biofilm nitrification. Biotechnol Bioeng 24:669–689

    Article  CAS  Google Scholar 

  • Tonkovic Z (1998) Nitrite accumulation at the Mornington sewage treatment plant—causes and significance. In: 19th biennial international conference, water quality international, pp 165–172

  • Torà JA, Lafuente J, Carrera J, Baeza JA (2012) Fast start-up and controlled operation during a long-term period of a high-rate partial nitrification activated sludge system. Environ Technol 33:1361–1366. https://doi.org/10.1080/09593330.2011.626802

    Article  CAS  Google Scholar 

  • Vadivelu VM, Keller J, Yuan Z (2006a) Stoichiometric and kinetic characterisation of Nitrosomonas sp. in mixed culture by decoupling the growth and energy generation processes. J Biotechnol 126:342–356. https://doi.org/10.1016/j.jbiotec.2006.04.017

    Article  CAS  Google Scholar 

  • Vadivelu VM, Yuan Z, Fux C, Keller J (2006b) Stoichiometric and kinetic characterisation of Nitrobacter in mixed culture by decoupling the growth and energy generation processes. Biotechnol Bioeng 94:1176–1188. https://doi.org/10.1002/bit.20956

    Article  CAS  Google Scholar 

  • Van Dongen U, Jetten MS, Van Loosdrecht MCM (2001) The SHARON®-Anammox® process for treatment of ammonium rich wastewater. Water Sci Technol 44:153–160

    Article  Google Scholar 

  • Van Hulle SW, Volcke EI, Teruel JL, Donckels B, van Loosdrecht MC, Vanrolleghem PA (2007) Influence of temperature and pH on the kinetics of the Sharon nitritation process. J Chem Technol Biotechnol 82:471–480. https://doi.org/10.1002/jctb.1692

    Article  CAS  Google Scholar 

  • Van Loosdrecht MCM, Heijnen SJ (1993) Biofilm bioreactors for waste-water treatment. Trends Biotechnol 11:117–121. https://doi.org/10.1016/0167-7799(93)90085-N

    Article  Google Scholar 

  • Vannecke TPW, Volcke EIP (2015) Modelling microbial competition in nitrifying biofilm reactors. Biotechnol Bioeng 112:2550–2561. https://doi.org/10.1002/bit.25680

    Article  CAS  Google Scholar 

  • Veys P, Vandeweyer H, Audenaert W, Monballiu A, Dejans P, Jooken E, Dumoulin A, Meesschaert BD, Van Hulle SWH (2010) Performance analysis and optimization of autotrophic nitrogen removal in different reactor configurations: a modelling study. Environ Technol 31:1311–1324. https://doi.org/10.1080/09593331003713685

    Article  CAS  Google Scholar 

  • Villaverde S, Garcia-Encina PA, Fdz-Polanco F (1997) Influence of pH over nitrifying biofilm activity in submerged biofilters. Water Res 31:1180–1186

    Article  CAS  Google Scholar 

  • Vlaeminck SE, De Clippeleir H, Verstraete W (2012) Microbial resource management of one-stage partial nitritation/anammox. Microb Biotechnol 5:433–448. https://doi.org/10.1111/j.1751-7915.2012.00341.x

    Article  CAS  Google Scholar 

  • Wan C, Yang X, Lee D-J, Sun S, Liu X, Zhang P (2014) Influence of hydraulic retention time on partial nitrification of continuous-flow aerobic granular-sludge reactor. Environ Technol 35:1760–1765. https://doi.org/10.1080/09593330.2014.881423

    Article  CAS  Google Scholar 

  • Wei D, Du B, Xue X, Dai P, Zhang J (2014) Analysis of factors affecting the performance of partial nitrification in a sequencing batch reactor. Appl Microbiol Biotechnol 98:1863–1870. https://doi.org/10.1007/s00253-013-5135-z

    Article  CAS  Google Scholar 

  • Wett B (2006) Solved upscaling problems for implementing deammonification of rejection water. Water Sci Technol 53:121. https://doi.org/10.2166/wst.2006.413

    Article  CAS  Google Scholar 

  • Wett B (2007) Development and implementation of a robust deammonification process. Water Sci Technol 56:81. https://doi.org/10.2166/wst.2007.611

    Article  CAS  Google Scholar 

  • Wett B, Rauch W (2003) The role of inorganic carbon limitation in biological nitrogen removal of extremely ammonia concentrated wastewater. Water Res 37:1100–1110. https://doi.org/10.1016/S0043-1354(02)00440-2

    Article  CAS  Google Scholar 

  • Wett B, Rostek R, Rauch W, Ingerle K (1998) pH-controlled reject-water-treatment. Water Sci Technol 37:165–172

    Article  CAS  Google Scholar 

  • Wett B, Hell M, Nyhuis G, Puempel T, Takacs I, Murthy S (2010) Syntrophy of aerobic and anaerobic ammonia oxidisers. Water Sci Technol 61:1915. https://doi.org/10.2166/wst.2010.969

    Article  CAS  Google Scholar 

  • Whittaker M, Bergmann D, Arciero D, Hooper AB (2000) Electron transfer during the oxidation of ammonia by the chemolithotrophic bacterium Nitrosomonas europaea. Biochim Biophys Acta BBA Bioenerg 1459:346–355. https://doi.org/10.1016/S0005-2728(00)00171-7

    Article  CAS  Google Scholar 

  • Wiesmann U (1994) Biological nitrogen removal from wastewater. In: Biotechnics/wastewater. Advances in biochemical engineering/biotechnology, vol 51. Springer, Berlin, pp 113–154. https://doi.org/10.1007/BFb0008736

    Chapter  Google Scholar 

  • Wyffels S, Boeckx P, Pynaert K, Zhang D, Cleemput OV, Chen G, Verstraete W (2004) Nitrogen removal from sludge reject water by a two-stage oxygen-limited autotrophic nitrification denitrification process. Water Sci Technol 49:57–64

    Article  CAS  Google Scholar 

  • Xu Y, Yuan Z, Ni B-J (2016) Biotransformation of pharmaceuticals by ammonia oxidizing bacteria in wastewater treatment processes. Sci Total Environ 566–567:796–805. https://doi.org/10.1016/j.scitotenv.2016.05.118

    Article  CAS  Google Scholar 

  • Yarbrough JM, Rake JB, Eagon RG (1980) Bacterial inhibitory effects of nitrite: inhibition of active transport, but not of group translocation, and of intracellular enzymes. Appl Environ Microbiol 39:831–834

    CAS  Google Scholar 

  • Ye L, Pijuan M, Yuan Z (2010) The effect of free nitrous acid on the anabolic and catabolic processes of glycogen accumulating organisms. Water Res 44:2901–2909. https://doi.org/10.1016/j.watres.2010.02.010

    Article  CAS  Google Scholar 

  • Yoshida Y, Takahashi K, Saito T, Tanaka K (2006) The effect of nitrite on aerobic phosphate uptake and denitrifying activity of phosphate-accumulating organisms. Water Sci Technol 53:21–27. https://doi.org/10.2166/wst.2006.165

    Article  CAS  Google Scholar 

  • Zafarzadeh A, Bina B, Attar HM, Nejad MH (2010) Performance of moving bed biofilm reactors for biological nitrogen compounds removal from wastewater by partial nitrification-denitrification process. Iran J Environ Health Sci Eng 7:353–364

    CAS  Google Scholar 

  • Zhang D, Zhang D et al (2004) Community analysis of ammonia oxidizer in the oxygen-limited nitritation stage of OLAND system by DGGE of PCR amplified 16S rDNA fragments and FISH. J Environ Sci 16:838–842

    CAS  Google Scholar 

  • Zhang M, Lawlor PG, Hu Z, Zhan X (2013) Nutrient removal from separated pig manure digestate liquid using hybrid biofilters. Environ Technol 34:645–651. https://doi.org/10.1080/09593330.2012.710406

    Article  CAS  Google Scholar 

  • Zhou Y, Oehmen A, Lim M, Vadivelu V, Ng W (2011) The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants. Water Res 45(15): 4672–4682. https://doi.org/10.1016/j.watres.2011.06.025

    Article  CAS  Google Scholar