link.springer.com

Ex vivo expansion of hematopoietic stem cells - Science China Life Sciences

  • ️Zhang, ChengCheng
  • ️Tue Aug 04 2015

References

  1. Till JE, McCulloch CE. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res, 1961, 14: 213–222

    PubMed  CAS  Google Scholar 

  2. Abramson S, Miller RG, Phillips RA. The identification in adult bone marrow of pluripotent and restricted stem cells of the myeloid and lymphoid systems. J Exp Med, 1977, 145: 1567–1579

    PubMed  CAS  PubMed Central  Google Scholar 

  3. Jordan CT, McKearn JP, Lemischka IR. Cellular and developmental properties of fetal hematopoietic stem cells. Cell, 1990, 61: 953–963

    PubMed  CAS  Google Scholar 

  4. Morrison SJ, Uchida N, Weissman IL. The biology of hematopoietic stem cells. Annu Rev Cell Dev Biol, 1995, 11: 35–71

    PubMed  CAS  Google Scholar 

  5. Babovic S, Eaves CJ. Hierarchical organization of fetal and adult hematopoietic stem cells. Exp Cell Res, 2014, 329: 185–191

    PubMed  CAS  Google Scholar 

  6. Cullen SM, Mayle A, Rossi L, Goodell MA. Hematopoietic stem cell development: an epigenetic journey. Curr Top Dev Biol, 2014, 107: 39–75

    PubMed  CAS  Google Scholar 

  7. Weng AP, Ferrando AA, Lee W, Morris JP 4th, Silverman LB, Sanchez-Irizarry C, Blacklow SC, Look AT, Aster JC. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science, 2004, 306: 269–271

    PubMed  CAS  Google Scholar 

  8. Bryder D, Rossi DJ, Weissman IL. Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am J Pathol, 2006, 169: 338–346

    PubMed  CAS  PubMed Central  Google Scholar 

  9. Osawa M, Hanada K, Hamada H, Nakauchi H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science, 1996, 273: 242–245

    PubMed  CAS  Google Scholar 

  10. Domen J, Weissman IL. Self-renewal, differentiation or death: regulation and manipulation of hematopoietic stem cell fate. Mol Med Today, 1999, 5: 201–208

    PubMed  CAS  Google Scholar 

  11. Walasek MA, van Os R, de Haan G. Hematopoietic stem cell expansion: challenges and opportunities. Ann N Y Acad Sci, 2012, 1266: 138–150

    PubMed  CAS  Google Scholar 

  12. Dahlberg A, Delaney C, Bernstein ID. Ex vivo expansion of human hematopoietic stem and progenitor cells. Blood, 2011, 117: 6083–6090

    PubMed  CAS  PubMed Central  Google Scholar 

  13. Huang X, Cho S, Spangrude GJ. Hematopoietic stem cells: generation and self-renewal. Cell Death Differ, 2007, 14: 1851–1859

    PubMed  CAS  Google Scholar 

  14. Karlsson G, Blank U, Moody JL, Ehinger M, Singbrant S, Deng CX, Karlsson S. Smad4 is critical for self-renewal of hematopoietic stem cells. J Exp Med, 2007, 204: 467–474

    PubMed  CAS  PubMed Central  Google Scholar 

  15. Ross J, Li L. Recent advances in understanding extrinsic control of hematopoietic stem cell fate. Curr Opin Hematol, 2006, 13: 237–242

    PubMed  CAS  Google Scholar 

  16. Bonde J, Hess DA, Nolta JA. Recent advances in hematopoietic stem cell biology. Curr Opin Hematol, 2004, 11: 392–398

    PubMed  Google Scholar 

  17. Nakamura-Ishizu A, Takizawa H, Suda T. The analysis, roles and regulation of quiescence in hematopoietic stem cells. Development, 2014, 141: 4656–4666

    PubMed  CAS  Google Scholar 

  18. Daley GQ. Deriving blood stem cells from pluripotent stem cells for research and therapy. Best Pract Res Clin Haematol, 2014, 27: 293–297

    PubMed  Google Scholar 

  19. Riddell J, Gazit R, Garrison BS, Guo G, Saadatpour A, Mandal PK, Ebina W, Volchkov P, Yuan GC, Orkin SH, Rossi DJ. Reprogramming committed murine blood cells to induced hematopoietic stem cells with defined factors. Cell, 2014, 157: 549–564

    PubMed  CAS  PubMed Central  Google Scholar 

  20. Uchida N, Tsukamoto A, He D, Friera AM, Scollay R, Weissman IL. High doses of purified stem cells cause early hematopoietic recovery in syngeneic and allogeneic hosts. J Clin Invest, 1998, 101: 961–966

    PubMed  CAS  PubMed Central  Google Scholar 

  21. Jansen J, Hanks S, Thompson JM, Dugan MJ, Akard LP. Transplantation of hematopoietic stem cells from the peripheral blood. J Cell Mol Med, 2005, 9: 37–50

    PubMed  Google Scholar 

  22. Ballen KK. New trends in umbilical cord blood transplantation. Blood, 2005, 105: 3786–3792

    PubMed  CAS  Google Scholar 

  23. Munoz J, Shah N, Rezvani K, et al. Concise review: umbilical cord blood transplantation: past, present, and future. Stem Cells Transl Med, 2014, 3: 1435–1443

    PubMed  PubMed Central  Google Scholar 

  24. Cox DB, Platt RJ, Zhang F. Therapeutic genome editing: prospects and challenges. Nat Med, 2015, 21: 121–131

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 2014, 346: 1258096

    PubMed  Google Scholar 

  26. Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells, 1978, 4: 7–25

    PubMed  CAS  Google Scholar 

  27. Mendelson A, Frenette PS. Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat Med, 2014, 20: 833–846

    PubMed  CAS  PubMed Central  Google Scholar 

  28. He N, Zhang L, Cui J, Li Z. Bone marrow vascular niche: home for hematopoietic stem cells. Bone Marrow Res, 2014, 2014: 128436

    PubMed  PubMed Central  Google Scholar 

  29. Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature, 2014, 505: 327–334

    PubMed  CAS  PubMed Central  Google Scholar 

  30. Lymperi S, Ferraro F, Scadden DT. The HSC niche concept has turned 31. Has our knowledge matured? Ann N Y Acad Sci, 2010, 1192: 12–18

    PubMed  CAS  Google Scholar 

  31. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, Ross J, Haug J, Johnson T, Feng JQ, Harris S, Wiedemann LM, Mishina Y, Li L. Identification of the haematopoietic stem cell niche and control of the niche size. Nature, 2003, 425: 836–841

    PubMed  CAS  Google Scholar 

  32. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, Milner LA, Kronenberg HM, Scadden DT. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature, 2003, 425: 841–846

    PubMed  CAS  Google Scholar 

  33. Taichman RS, Emerson SG. The role of osteoblasts in the hematopoietic microenvironment. Stem Cells, 1998, 16: 7–15

    PubMed  CAS  Google Scholar 

  34. Adams GB, Alley IR, Chung UI, Chabner KT, Jeanson NT, Lo Celso C, Marsters ES, Chen M, Weinstein LS, Lin CP, Kronenberg HM, Scadden DT. Haematopoietic stem cells depend on Gαs-mediated signalling to engraft bone marrow. Nature, 2009, 459: 103–107

    PubMed  CAS  PubMed Central  Google Scholar 

  35. Xie Y, Yin T, Wiegraebe W, He XC, Miller D, Stark D, Perko K, Alexander R, Schwartz J, Grindley JC, Park J, Haug JS, Wunderlich JP, Li H, Zhang S, Johnson T, Feldman RA, Li L. Detection of functional haematopoietic stem cell niche using real-time imaging. Nature, 2009, 457: 97–101

    PubMed  CAS  Google Scholar 

  36. Sugiyama T, Kohara H, Noda M, Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity, 2006, 25: 977–988

    PubMed  CAS  Google Scholar 

  37. Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, Tagliafico E, Ferrari S, Robey PG, Riminucci M, Bianco P. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell, 2007, 131: 324–336

    PubMed  CAS  Google Scholar 

  38. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma’ayan A, Enikolopov GN, Frenette PS. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature, 2010, 466: 829–834

    PubMed  CAS  PubMed Central  Google Scholar 

  39. Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S, Zhang D, Mizoguchi T, Wei Q, Lucas D, Ito K, Mar JC, Bergman A, Frenette PS. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature, 2013, 502: 637–643

    PubMed  CAS  Google Scholar 

  40. Ding L, Saunders TL, Enikolopov G, Morrison SJ. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature, 2012, 481: 457–462

    PubMed  CAS  PubMed Central  Google Scholar 

  41. Kiel MJ, Yilmaz OH, Iwashita T, Terhorst C, Morrison SJ. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell, 2005, 121: 1109–1121

    PubMed  CAS  Google Scholar 

  42. Chow A, Lucas D, Hidalgo A, Méndez-Ferrer S, Hashimoto D, Scheiermann C, Battista M, Leboeuf M, Prophete C, van Rooijen N, Tanaka M, Merad M, Frenette PS. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med, 2011, 208: 261–271

    PubMed  CAS  PubMed Central  Google Scholar 

  43. Winkler IG, Sims NA, Pettit AR, Barbier V, Nowlan B, Helwani F, Poulton IJ, van Rooijen N, Alexander KA, Raggatt LJ, Lévesque JP. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood, 2010, 116: 4815–4828

    PubMed  CAS  Google Scholar 

  44. Zhao M, Perry JM, Marshall H, Venkatraman A, Qian P, He XC, Ahamed J, Li L. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat Med, 2014, 20: 1321–1326

    PubMed  CAS  Google Scholar 

  45. Bruns I, Lucas D, Pinho S, Ahmed J, Lambert MP, Kunisaki Y, Scheiermann C, Schiff L, Poncz M, Bergman A, Frenette PS. Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat Med, 2014, 20: 1315–1320

    PubMed  CAS  PubMed Central  Google Scholar 

  46. Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA, Frenette PS. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell, 2006, 124: 407–421

    PubMed  CAS  Google Scholar 

  47. Naveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F, Daley GQ. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature, 2009, 460: 259–263

    PubMed  CAS  PubMed Central  Google Scholar 

  48. Fujisaki J, Wu J, Carlson AL, Silberstein L, Putheti P, Larocca R, Gao W, Saito TI, Lo Celso C, Tsuyuzaki H, Sato T, Côté D, Sykes M, Strom TB, Scadden DT, Lin CP. In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature, 2011, 474: 216–219

    PubMed  CAS  PubMed Central  Google Scholar 

  49. Rebel VI, Dragowska W, Eaves CJ, Humphries RK, Lansdorp PM. Amplification of Sca-1+ Lin- WGA+ cells in serum-free cultures containing steel factor, interleukin-6, and erythropoietin with maintenance of cells with long-term in vivo reconstituting potential. Blood, 1994, 83: 128–136

    PubMed  CAS  Google Scholar 

  50. Li CL, Johnson GR. Stem cell factor enhances the survival but not the self-renewal of murine hematopoietic long-term repopulating cells. Blood, 1994, 84: 408–414

    PubMed  CAS  Google Scholar 

  51. Sitnicka E, Lin N, Priestley GV, Fox N, Broudy VC, Wolf NS, Kaushansky K. The effect of thrombopoietin on the proliferation and differentiation of murine hematopoietic stem cells. Blood, 1996, 87: 4998–5005

    PubMed  CAS  Google Scholar 

  52. Matsunaga T, Kato T, Miyazaki H, Ogawa M. Thrombopoietin promotes the survival of murine hematopoietic long-term reconstituting cells: comparison with the effects of FLT3/FLK-2 ligand and interleukin-6. Blood, 1998, 92: 452–461

    PubMed  CAS  Google Scholar 

  53. Yagi M, Ritchie KA, Sitnicka E, Storey C, Roth GJ, Bartelmez S. Sustained ex vivo expansion of hematopoietic stem cells mediated by thrombopoietin. Proc Natl Acad Sci USA, 1999, 96: 8126–8131

    PubMed  CAS  PubMed Central  Google Scholar 

  54. Varnum-Finney B, Xu L, Brashem-Stein C, Nourigat C, Flowers D, Bakkour S, Pear WS, Bernstein ID. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat Med, 2000, 6: 1278–1281

    PubMed  CAS  Google Scholar 

  55. Chiba S. Notch signaling in stem cell systems. Stem Cells, 2006, 24: 2437–2447

    PubMed  CAS  Google Scholar 

  56. Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K, Hintz L, Nusse R, Weissman IL. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature, 2003, 423: 409–414

    PubMed  CAS  Google Scholar 

  57. Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T, Yates JR 3rd, Nusse R. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature, 2003, 423: 448–452

    PubMed  CAS  Google Scholar 

  58. Nemeth MJ, Topol L, Anderson SM, Yang Y, Bodine DM. Wnt5a inhibits canonical Wnt signaling in hematopoietic stem cells and enhances repopulation. Proc Natl Acad Sci USA, 2007, 104: 15436–15441

    PubMed  CAS  PubMed Central  Google Scholar 

  59. Nemeth MJ, Bodine DM. Regulation of hematopoiesis and the hematopoietic stem cell niche by Wnt signaling pathways. Cell Res, 2007, 17: 746–758

    PubMed  CAS  Google Scholar 

  60. de Haan G, Weersing E, Dontje B, van Os R, Bystrykh LV, Vellenga E, Miller G. In vitro generation of long-term repopulating hematopoietic stem cells by fibroblast growth factor-1. Dev Cell, 2003, 4: 241–251

    PubMed  Google Scholar 

  61. Yeoh JS, van Os R, Weersing E, Ausema A, Dontje B, Vellenga E, de Haan G. Fibroblast growth factor-1 and -2 preserve long-term repopulating ability of hematopoietic stem cells in serum-free cultures. Stem Cell, 2006, 24: 1564–1572

    CAS  Google Scholar 

  62. Bhardwaj G, Murdoch B, Wu D, Baker DP, Williams KP, Chadwick K, Ling LE, Karanu FN, Bhatia M. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol, 2001, 2: 172–180

    PubMed  CAS  Google Scholar 

  63. Dyer MA, Farrington SM, Mohn D, Munday JR, Baron MH. Indian hedgehog activates hematopoiesis and vasculogenesis and can respecify prospective neurectodermal cell fate in the mouse embryo. Development, 2001, 128: 1717–1730

    PubMed  CAS  Google Scholar 

  64. Baron MH. Molecular regulation of embryonic hematopoiesis and vascular development: a novel pathway. J Hematother Stem Cell Res, 2001, 10: 587–594

    PubMed  CAS  Google Scholar 

  65. North TE, Goessling W, Walkley CR, Lengerke C, Kopani KR, Lord AM, Weber GJ, Bowman TV, Jang IH, Grosser T, Fitzgerald GA, Daley GQ, Orkin SH, Zon LI. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature, 2007, 447: 1007–1011

    PubMed  CAS  PubMed Central  Google Scholar 

  66. Kang YJ, Yang SJ, Park G, Cho B, Min CK, Kim TY, Lee JS, Oh IH. A novel function of interleukin-10 promoting self-renewal of hematopoietic stem cells. Stem Cells, 2007, 25: 1814–1822

    PubMed  CAS  Google Scholar 

  67. Zhang CC, Lodish HF. Insulin-like growth factor 2 expressed in a novel fetal liver cell population is a growth factor for hematopoietic stem cells. Blood, 2004, 103: 2513–2521

    PubMed  CAS  Google Scholar 

  68. Chou S, Lodish HF. Fetal liver hepatic progenitors are supportive stromal cells for hematopoietic stem cells. Proc Natl Acad Sci USA, 2010, 107: 7799–7804

    PubMed  CAS  PubMed Central  Google Scholar 

  69. Huynh H, LIizuka S, Kaba M, Kirak O, Zheng J, Lodish HF, Zhang CC. IGFBP2 secreted by a tumorigenic cell line supports ex vivo expansion of mouse hematopoietic stem cells. Stem Cells, 2008, 26: 1628–1635

    PubMed  CAS  PubMed Central  Google Scholar 

  70. Huynh H, Zheng J, Umikawa M, Zhang C, Silvany R, Iizuka S, Holzenberger M, Zhang W, Zhang CC. IGF binding protein 2 supports the survival and cycling of hematopoietic stem cells. Blood, 2011, 118: 3236–3243

    PubMed  CAS  PubMed Central  Google Scholar 

  71. Zhang CC, Kaba M, Ge G, Xie K, Tong W, Hug C, Lodish HF. Angiopoietin-like proteins stimulate ex vivo expansion of hematopoietic stem cells. Nat Med, 2006, 12: 240–245

    PubMed  PubMed Central  Google Scholar 

  72. Zheng J, Huynh H, Umikawa M, Silvany R, Zhang CC. Angiopoietin-like protein 3 supports the activity of hematopoietic stem cells in the bone marrow niche. Blood, 2011, 117: 470–479

    PubMed  CAS  PubMed Central  Google Scholar 

  73. Zheng J, Umikawa M, Zhang S, Huynh H, Silvany R, Chen BP, Chen L, Zhang CC. Ex vivo expanded hematopoietic stem cells overcome the MHC barrier in allogeneic transplantation. Cell Stem Cell, 2011, 9: 119–130

    PubMed  CAS  PubMed Central  Google Scholar 

  74. Zheng J, Umikawa M, Cui C, Li J, Chen X, Zhang C, Huynh H, Kang X, Silvany R, Wan X, Ye J, Cantó AP, Chen SH, Wang HY, Ward ES, Zhang CC. Inhibitory receptors bind ANGPTLs and support blood stem cells and leukaemia development. Nature, 2012, 485: 656–660

    PubMed  CAS  PubMed Central  Google Scholar 

  75. Himburg HA, Muramoto GG, Daher P, Meadows SK, Russell JL, Doan P, Chi JT, Salter AB, Lento WE, Reya T, Chao NJ, Chute JP. Pleiotrophin regulates the expansion and regeneration of hematopoietic stem cells. Nat Med, 2010, 16: 475–482

    PubMed  CAS  PubMed Central  Google Scholar 

  76. Weinreich MA, Lintmaer I, Wang L, Liggitt HD, Harkey MA, Blau CA. Growth factor receptors as regulators of hematopoiesis. Blood, 2006, 108: 3713–3721

    PubMed  CAS  PubMed Central  Google Scholar 

  77. Suzuki T, Yokoyama Y, Kumano K, Takanashi M, Kozuma S, Takato T, Nakahata T, Nishikawa M, Sakano S, Kurokawa M, Ogawa S, Chiba S. Highly efficient ex vivo expansion of human hematopoietic stem cells using Delta1-Fc chimeric protein. Stem Cells, 2006, 24: 2456–2465

    PubMed  CAS  Google Scholar 

  78. Bunting KD, Galipeau J, Topham D, Benaim E, Sorrentino BP. Effects of retroviral-mediated MDR1 expression on hematopoietic stem cell self-renewal and differentiation in culture. Ann N Y Acad Sci, 1999, 872: 125–140; discussion 140–141

    PubMed  CAS  Google Scholar 

  79. Antonchuk J, Sauvageau G, Humphries RK. HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell, 2002, 109: 39–45

    PubMed  CAS  Google Scholar 

  80. Krosl J, Austin P, Beslu N, Kroon E, Humphries RK, Sauvageau G. In vitro expansion of hematopoietic stem cells by recombinant TAT-HOXB4 protein. Nat Med, 2003, 9: 1428–1432

    PubMed  CAS  Google Scholar 

  81. Moore KA, Ema H, Lemischka IR. In vitro maintenance of highly purified, transplantable hematopoietic stem cells. Blood, 1997, 89: 4337–4347

    PubMed  CAS  Google Scholar 

  82. Weisel KC, Gao Y, Shieh JH, Moore MA. Stromal cell lines from the aorta-gonado-mesonephros region are potent supporters of murine and human hematopoiesis. Exp Hematol, 2006, 34: 1505–1516

    PubMed  CAS  Google Scholar 

  83. Yoder MC, King B, Hiatt K, Williams DA. Murine embryonic yolk sac cells promote in vitro proliferation of bone marrow high proliferative potential colony-forming cells. Blood, 1995, 86: 1322–1330

    PubMed  CAS  Google Scholar 

  84. Zhang CC, Lodish HF. Murine hematopoietic stem cells change their surface phenotype during ex vivo expansion. Blood, 2005, 105: 4314–4320

    PubMed  CAS  PubMed Central  Google Scholar 

  85. Butler JM, Nolan DJ, Vertes EL, Varnum-Finney B, Kobayashi H, Hooper AT, Seandel M, Shido K, White IA, Kobayashi M, Witte L, May C, Shawber C, Kimura Y, Kitajewski J, Rosenwaks Z, Bernstein ID, Rafii S. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell, 2010, 6: 251–264

    PubMed  CAS  PubMed Central  Google Scholar 

  86. Condomines M, Sadelain M. Tolerance induction by allogeneic hematopoietic stem cells. Cell Stem Cell, 2011, 9: 87–88

    PubMed  CAS  Google Scholar 

  87. Zheng J, Song C, Zhang CC. A new chapter: hematopoietic stem cells are direct players in immunity. Cell Biosci, 2011, 1: 33

    PubMed  PubMed Central  Google Scholar 

  88. Zhang CC. Hematopoietic stem cells: interplay with immunity. Am J Blood Res, 2012, 2: 219–227

    PubMed  CAS  PubMed Central  Google Scholar 

  89. Fan X, Gay FP, Ong SY, Ang JM, Chu PP, Bari S, Lim TK, Hwang WY. Mesenchymal stromal cell supported umbilical cord blood ex vivo expansion enhances regulatory T cells and reduces graft versus host disease. Cytotherapy, 2013, 15: 610–619

    PubMed  CAS  Google Scholar 

  90. Zsebo KM, Wypych J, McNiece IK, Lu HS, Smith KA, Karkare SB, Sachdev RK, Yuschenkoff VN, Birkett NC, Williams LR, Satyagal VN, Tung WF, Bosselman RA, Mendiaz EA, Langley KE. Identification, purification, and biological characterization of hematopoietic stem cell factor from buffalo rat liver-conditioned medium. Cell, 1990, 63: 195–201

    PubMed  CAS  Google Scholar 

  91. Martin FH, Suggs SV, Langley KE, Lu HS, Ting J, Okino KH, Morris CF, McNiece IK, Jacobsen FW, Mendiaz EA, Birkett NC, Smith KA, Johnson M Jo, Parker VP, Flores JC, Patel AC, Fisher EF, Erjavec HO, Herrera CJ, Wypych J, Sachdev RK, Pope JA, Leslie I, Wen DZ, Lin CH, Cupples RL, Zsebo KM. Primary structure and functional expression of rat and human stem cell factor DNAs. Cell, 1990, 63: 203–211

    PubMed  CAS  Google Scholar 

  92. Anderson DM, Lyman SD, Baird A, Wignall JM, Eisenman J, Rauch C, March CJ, Boswell HS, Gimpel SD, Cosman D, Williams DE. Molecular cloning of mast cell growth factor, a hematopoietin that is active in both membrane bound and soluble forms. Cell, 1990, 63: 235–243

    PubMed  CAS  Google Scholar 

  93. Huang E, Nocka K, Beier DR, Chu TY, Buck J, Lahm HW, Wellner D, Leder P, Besmer P. The hematopoietic growth factor KL is encoded by the Sl locus and is the ligand of the c-kit receptor, the gene product of the W locus. Cell, 1990, 63: 225–233

    PubMed  CAS  Google Scholar 

  94. Zsebo KM, Williams DA, Geissler EN, Broudy VC, Martin FH, Atkins HL, Hsu RY, Birkett NC, Okino KH, Murdock DC, Jacobsen FW, Langley KE, Smith KA, Takeish T, Cattanach BM, Galli SJ, Suggs SV. Stem cell factor is encoded at the Sl locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell, 1990, 63: 213–224

    PubMed  CAS  Google Scholar 

  95. Williams DE, Eisenman J, Baird A, Rauch C, Van Ness K, March CJ, Park LS, Martin U, Mochizuki DY, Boswell HS, Burgess GS, Cosman D, Lyman SD. Identification of a ligand for the c-kit proto-oncogene. Cell, 1990, 63: 167–174

    PubMed  CAS  Google Scholar 

  96. Sieff CA. Hematopoietic growth factors. J Clin Invest, 1987, 79: 1549–1557

    PubMed  CAS  PubMed Central  Google Scholar 

  97. Brandt J, Srour EF, van Besien K, Briddell RA, Hoffman R. Cytokine-dependent long-term culture of highly enriched precursors of hematopoietic progenitor cells from human bone marrow. J Clin Invest, 1990, 86: 932–941

    PubMed  CAS  PubMed Central  Google Scholar 

  98. Brugger W, Mocklin W, Heimfeld S, Berenson RJ, Mertelsmann R, Kanz L. Ex vivo expansion of enriched peripheral blood CD34+ progenitor cells by stem cell factor, interleukin-1 beta (IL-1 beta), IL-6, IL-3, interferon-gamma, and erythropoietin. Blood, 1993, 81: 2579–2584

    PubMed  CAS  Google Scholar 

  99. Lansdorp PM, Dragowska W. Long-term erythropoiesis from constant numbers of CD34+ cells in serum-free cultures initiated with highly purified progenitor cells from human bone marrow. J Exp Med, 1992, 175: 1501–1509

    PubMed  CAS  Google Scholar 

  100. Broxmeyer HE, Hangoc G, Cooper S, Ribeiro RC, Graves V, Yoder M, Wagner J, Vadhan-Raj S, Benninger L, Rubinstein P, Broun ER. Growth characteristics and expansion of human umbilical cord blood and estimation of its potential for transplantation in adults. Proc Natl Acad Sci USA, 1992, 89: 4109–4113

    PubMed  CAS  PubMed Central  Google Scholar 

  101. Koller MR, Emerson SG, Palsson BO. Large-scale expansion of human stem and progenitor cells from bone marrow mononuclear cells in continuous perfusion cultures. Blood, 1993, 82: 378–384

    PubMed  CAS  Google Scholar 

  102. Petzer AL, Hogge DE, Landsdorp PM, Reid DS, Eaves CJ. Self-renewal of primitive human hematopoietic cells (long-term-culture-initiating cells) in vitro and their expansion in defined medium. Proc Natl Acad Sci USA, 1996, 93: 1470–1474

    PubMed  CAS  PubMed Central  Google Scholar 

  103. Champlin RE, Schmitz N, Horowitz MM, Chapuis B, Chopra R, Cornelissen JJ, Gale RP, Goldman JM, Loberiza FR Jr, Hertenstein B, Klein JP, Montserrat E, Zhang MJ, Ringdén O, Tomany SC, Rowlings PA, Van Hoef ME, Gratwohl A. Blood stem cells compared with bone marrow as a source of hematopoietic cells for allogeneic transplantation. IBMTR Histocompatibility and Stem Cell Sources Working Committee and the European Group for Blood and Marrow Transplantation (EBMT). Blood, 2000, 95: 3702–3709

    CAS  Google Scholar 

  104. Gammaitoni L, Bruno S, Sanavio F, Gunetti M, Kollet O, Cavalloni G, Falda M, Fagioli F, Lapidot T, Aglietta M, Piacibello W. Ex vivo expansion of human adult stem cells capable of primary and secondary hemopoietic reconstitution. Exp Hematol, 2003, 31: 261–270

    PubMed  CAS  Google Scholar 

  105. Schoemans H, Theunissen K, Maertens J, Boogaerts M, Verfaillie C, Wagner J. Adult umbilical cord blood transplantation: a comprehensive review. Bone Marrow Transplant, 2006, 38: 83–93

    PubMed  CAS  Google Scholar 

  106. Brunstein CG, Wagner JE. Umbilical cord blood transplantation and banking. Annu Rev Med, 2006, 57: 403–417

    PubMed  CAS  Google Scholar 

  107. Kirouac DC, Zandstra PW. Understanding cellular networks to improve hematopoietic stem cell expansion cultures. Curr Opin Biotechnol, 2006, 17: 538–547

    PubMed  CAS  Google Scholar 

  108. Robinson S, Niu T, de Lima M, Ng J, Yang H, McMannis J, Karandish S, Sadeghi T, Fu P, del Angel M, O’Connor S, Champlin R, Shpall E. Ex vivo expansion of umbilical cord blood. Cytotherapy, 2005, 7: 243–250

    PubMed  CAS  Google Scholar 

  109. Lapidot T, Pflumio F, Doedens M, Murdoch B, Williams DE, Dick JE. Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice. Science, 1992, 255: 1137–1141

    PubMed  CAS  Google Scholar 

  110. Conneally E, Cashman J, Petzer A, Eaves C. Expansion in vitro of transplantable human cord blood stem cells demonstrated using a quantitative assay of their lympho-myeloid repopulating activity in nonobese diabetic-scid/scid mice. Proc Natl Acad Sci USA, 1997, 94: 9836–9841

    PubMed  CAS  PubMed Central  Google Scholar 

  111. Bhatia M, Bonnet D, Kapp U, Wang JC, Murdoch B, Dick JE. Quantitative analysis reveals expansion of human hematopoietic repopulating cells after short-term ex vivo culture. J Exp Med, 1997, 186: 619–624

    PubMed  CAS  PubMed Central  Google Scholar 

  112. McNiece I, Harrington J, Turney J, Kellner J, Shpall EJ. Ex vivo expansion of cord blood mononuclear cells on mesenchymal stem cells. Cytotherapy, 2004, 6: 311–317

    PubMed  CAS  Google Scholar 

  113. Robinson SN, Ng J, Niu T, Yang H, McMannis JD, Karandish S, Kaur I, Fu P, Del Angel M, Messinger R, Flagge F, de Lima M, Decker W, Xing D, Champlin R, Shpall EJ. Superior ex vivo cord blood expansion following co-culture with bone marrow-derived mesenchymal stem cells. Bone Marrow Transplant, 2006, 37: 359–366

    PubMed  CAS  PubMed Central  Google Scholar 

  114. Wagner W, Roderburg C, Wein F, Diehlmann A, Frankhauser M, Schubert R, Eckstein V, Ho AD. Molecular and secretory profiles of human mesenchymal stromal cells and their abilities to maintain primitive hematopoietic progenitors. Stem Cells, 2007, 25: 2638–2647

    PubMed  CAS  Google Scholar 

  115. Flores-Figueroa E, Montesinos JJ, Flores-Guzman P, Gutiérrez-Espíndola G, Arana-Trejo RM, Castillo-Medina S, Pérez-Cabrera A, Hernández-Estévez E, Arriaga L, Mayani H. Functional analysis of myelodysplastic syndromes-derived mesenchymal stem cells. Leuk Res, 2008, 32: 1407–1416

    PubMed  CAS  Google Scholar 

  116. Khoury M, Drake A, Chen Q, Dong D, Leskov I, Fragoso MF, Li Y, Iliopoulou BP, Hwang W, Lodish HF, Chen J. Mesenchymal stem cells secreting angiopoietin-like-5 support efficient expansion of human hematopoietic stem cells without compromising their repopulating potential. Stem Cells Dev, 2011, 20: 1371–1381

    PubMed  CAS  PubMed Central  Google Scholar 

  117. Ong LM, Fan X, Chu PP, Gay FP, Bari S, Ang JM, Li Z, Chen J, Lim SK, Bunte RM, Hwang WY. Cotransplantation of ex vivo expanded and unexpanded cord blood units in immunodeficient mice using insulin growth factor binding protein-2-augmented mesenchymal cell cocultures. Biol Blood Marrow Transplant, 2012, 18: 674–682

    PubMed  CAS  Google Scholar 

  118. de Lima M, McNiece I, Robinson SN, Munsell M, Eapen M, Horowitz M, Alousi A, Saliba R, McMannis JD, Kaur I, Kebriaei P, Parmar S, Popat U, Hosing C, Champlin R, Bollard C, Molldrem JJ, Jones RB, Nieto Y, Andersson BS, Shah N, Oran B, Cooper LJ, Worth L, Qazilbash MH, Korbling M, Rondon G, Ciurea S, Bosque D, Maewal I, Simmons PJ, Shpall EJ. Cord-blood engraftment with ex vivo mesenchymal-cell coculture. N Engl J Med, 2012, 367: 2305–2315

    PubMed  PubMed Central  Google Scholar 

  119. Koller MR, Manchel I, Maher RJ, Goltry KL, Armstrong RD, Smith AK. Clinical-scale human umbilical cord blood cell expansion in a novel automated perfusion culture system. Bone Marrow Transplant, 1998, 21: 653–663

    PubMed  CAS  Google Scholar 

  120. Csaszar E, Kirouac DC, Yu M, Wang W, Qiao W, Cooke MP, Boitano AE, Ito C, Zandstra PW. Rapid expansion of human hematopoietic stem cells by automated control of inhibitory feedback signaling. Cell Stem Cell, 2012, 10: 218–229

    PubMed  CAS  Google Scholar 

  121. Delaney C, Heimfeld S, Brashem-Stein C, Voorhies H, Manger RL, Bernstein ID. Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nat Med, 2010, 16: 232–236

    PubMed  CAS  PubMed Central  Google Scholar 

  122. Clevers H, Loh KM, Nusse R. Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science, 2014, 346: 1248012

    PubMed  Google Scholar 

  123. Lento W, Congdon K, Voermans C, Kritzik M, Reya T. Wnt signaling in normal and malignant hematopoiesis. Cold Spring Harb Perspect Biol, 2013, 5: a008011

    Google Scholar 

  124. Fleming HE, Janzen V, Lo Celso C, Guo J, Leahy KM, Kronenberg HM, Scadden DT. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell, 2008, 2: 274–283

    PubMed  CAS  PubMed Central  Google Scholar 

  125. Luis TC, Naber BA, Roozen PP, Brugman MH, de Haas EF, Ghazvini M, Fibbe WE, van Dongen JJ, Fodde R, Staal FJ. Canonical wnt signaling regulates hematopoiesis in a dosage-dependent fashion. Cell Stem Cell, 2011, 9: 345–356

    PubMed  CAS  Google Scholar 

  126. Florian MC, Nattamai KJ, Dörr K, Marka G, Uberle B, Vas V, Eckl C, Andrä I, Schiemann M, Oostendorp RA, Scharffetter-Kochanek K, Kestler HA, Zheng Y, Geiger H. A canonical to non-canonical Wnt signalling switch in haematopoietic stem-cell ageing. Nature, 2013, 503: 392–396

    PubMed  CAS  PubMed Central  Google Scholar 

  127. Ko KH, Holmes T, Palladinetti P, Song E, Nordon R, O’Brien TA, Dolnikov A. GSK-3 inhibition promotes engraftment of ex vivo-expanded hematopoietic stem cells and modulates gene expression. Stem Cell, 2011, 29: 108–118

    CAS  Google Scholar 

  128. Trowbridge JJ, Xenocostas A, Moon RT, Bhatia M. Glycogen synthase kinase-3 is an in vivo regulator of hematopoietic stem cell repopulation. Nat Med, 2006, 12: 89–98

    PubMed  CAS  Google Scholar 

  129. Langer JC, Henckaerts E, Orenstein J, Snoeck HW. Quantitative trait analysis reveals transforming growth factor- 2 as a positive regulator of early hematopoietic progenitor and stem cell function. J Exp Med, 2004, 199: 5–14

    PubMed  CAS  PubMed Central  Google Scholar 

  130. Henckaerts E, Langer JC, Orenstein J, Snoeck HW. The positive regulatory effect of TGF- 2 on primitive murine hemopoietic stem and progenitor cells is dependent on age, genetic background, and serum factors. J Immunol, 2004, 173: 2486–2493

    PubMed  CAS  Google Scholar 

  131. Utsugisawa T, Moody JL, Aspling M, Nilsson E, Carlsson L, Karlsson S. A road map toward defining the role of Smad signaling in hematopoietic stem cells. Stem Cells, 2006, 24: 1128–1136

    PubMed  CAS  Google Scholar 

  132. Pimanda JE, Donaldson IJ, de Bruijn MF, Kinston S, Knezevic K, Huckle L, Piltz S, Landry JR, Green AR, Tannahill D, Göttgens B. The SCL transcriptional network and BMP signaling pathway interact to regulate RUNX1 activity. Proc Natl Acad Sci USA, 2007, 104: 840–845

    PubMed  CAS  PubMed Central  Google Scholar 

  133. Yamazaki S, Iwama A, Takayanagi S, Eto K, Ema H, Nakauchi H. TGF-β as a candidate bone marrow niche signal to induce hematopoietic stem cell hibernation. Blood, 2009, 113: 1250–1256

    PubMed  CAS  Google Scholar 

  134. Yamazaki S, Ema H, Karlsson G, Yamaguchi T, Miyoshi H, Shioda S, Taketo MM, Karlsson S, Iwama A, Nakauchi H. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell, 2011, 147: 1146–1158

    PubMed  CAS  Google Scholar 

  135. Crcareva A, Saito T, Kunisato A, Kumano K, Suzuki T, Sakata-Yanagimoto M, Kawazu M, Stojanovic A, Kurokawa M, Ogawa S, Hirai H, Chiba S. Hematopoietic stem cells expanded by fibroblast growth factor-1 are excellent targets for retrovirusmediated gene delivery. Exp Hematol, 2005, 33: 1459–1469

    PubMed  CAS  Google Scholar 

  136. Schiedlmeier B, Santos AC, Ribeiro A, Moncaut N, Lesinski D, Auer H, Kornacker K, Ostertag W, Baum C, Mallo M, Klump H. HOXB4’s road map to stem cell expansion. Proc Natl Acad Sci USA, 2007, 104: 16952–16957

    PubMed  CAS  PubMed Central  Google Scholar 

  137. Hoeflich A, Wu M, Mohan S, Föll J, Wanke R, Froehlich T, Arnold GJ, Lahm H, Kolb HJ, Wolf E. Overexpression of insulin-like growth factor-binding protein-2 in transgenic mice reduces postnatal body weight gain. Endocrinology, 1999, 140: 5488–5496

    PubMed  CAS  Google Scholar 

  138. Russo VC, Bach LA, Werther GA. Cell membrane association of insulin-like growth factor binding protein-2 (IGFBP-2) in the rat brain olfactory bulb. Prog Growth Factor Res, 1995, 6: 329–336

    PubMed  CAS  Google Scholar 

  139. Schutt BS, Langkamp M, Rauschnabel U, Ranke MB, Elmlinger MW. Integrin-mediated action of insulin-like growth factor binding protein-2 in tumor cells. J Mol Endocrinol, 2004, 32: 859–868

    PubMed  CAS  Google Scholar 

  140. Dunlap SM, Celestino J, Wang H, Jiang R, Holland EC, Fuller GN, Zhang W. Insulin-like growth factor binding protein 2 promotes glioma development and progression. Proc Natl Acad Sci USA, 2007, 104: 11736–11741

    PubMed  CAS  PubMed Central  Google Scholar 

  141. Wang GK, Hu L, Fuller GN, Zhang W. An interaction between insulin-like growth factor-binding protein 2 (IGFBP2) and integrin α5 is essential for IGFBP2-induced cell mobility. J Biol Chem, 2006, 281: 14085–14091

    PubMed  CAS  Google Scholar 

  142. Pereira JJ, Meyer T, Docherty SE, Reid HH, Marshall J, Thompson EW, Rossjohn J, Price JT. Bimolecular interaction of insulin-like growth factor (IGF) binding protein-2 with αvβ3 negatively modulates IGF-I-mediated migration and tumor growth. Cancer Res, 2004, 64: 977–984

    PubMed  CAS  Google Scholar 

  143. Hoeflich A, Reisinger R, Lahm H, Kiess W, Blum WF, Kolb HJ, Weber MM, Wolf E. Insulin-like growth factor-binding protein 2 in tumorigenesis: protector or promoter? Cancer Res, 2001, 61: 8601–8610

    PubMed  CAS  Google Scholar 

  144. Moore MG, Wetterau LA, Francis MJ, Peehl DM, Cohen P. Novel stimulatory role for insulin-like growth factor binding protein-2 in prostate cancer cells. Int J Cancer, 2003, 105: 14–19

    PubMed  CAS  Google Scholar 

  145. Besnard V, Corroyer S, Trugnan G, Chadelat K, Nabeyrat E, Cazals V, Clement A. Distinct patterns of insulin-like growth factor binding protein (IGFBP)-2 and IGFBP-3 expression in oxidant exposed lung epithelial cells. Biochim Biophys Acta, 2001, 1538: 47–58

    PubMed  CAS  Google Scholar 

  146. Chen X, Zheng J, Zou Y, Song C, Hu X, Zhang CC. IGF binding protein 2 is a cell-autonomous factor supporting survival and migration of acute leukemia cells. J Hematol Oncol, 2013, 6: 72

    PubMed  PubMed Central  Google Scholar 

  147. Zhang CC, Kaba M, Iizuka S, Huynh H, Lodish HF. Angiopoietin-like 5 and IGFBP2 stimulate ex vivo expansion of human cord blood hematopoietic stem cells as assayed by NOD/SCID transplantation. Blood, 2008, 111: 3415–3423

    PubMed  CAS  PubMed Central  Google Scholar 

  148. Krosl J, Mamo A, Chagraoui J, Wilhelm BT, Girard S, Louis I, Lessard J, Perreault C, Sauvageau G. A mutant allele of the Swi/Snf member BAF250a determines the pool size of fetal liver hemopoietic stem cell populations. Blood, 2010, 116: 1678–1684

    PubMed  CAS  PubMed Central  Google Scholar 

  149. Gupta R, Hong D, Iborra F, Sarno S, Enver T. NOV (CCN3) functions as a regulator of human hematopoietic stem or progenitor cells. Science, 2007, 316: 590–593

    PubMed  CAS  Google Scholar 

  150. Zhu W, Shiojima I, Ito Y, Li Z, Ikeda H, Yoshida M, Naito AT, Nishi J, Ueno H, Umezawa A, Minamino T, Nagai T, Kikuchi A, Asashima M, Komuro I. IGFBP-4 is an inhibitor of canonical Wnt signalling required for cardiogenesis. Nature, 2008, 454: 345–349

    PubMed  CAS  Google Scholar 

  151. Bendall SC, Stewart MH, Menendez P, George D, Vijayaragavan K, Werbowetski-Ogilvie T, Ramos-Mejia V, Rouleau A, Yang J, Bossé M, Lajoie G, Bhatia M. IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature, 2007, 448: 1015–1021

    PubMed  CAS  Google Scholar 

  152. Kadomatsu T, Endo M, Miyata K, Oike Y. Diverse roles of ANGPTL2 in physiology and pathophysiology. Trends Endocrinol Metab, 2014, 25: 245–254

    PubMed  CAS  Google Scholar 

  153. Santulli G. Angiopoietin-like proteins: a comprehensive look. Front Endocrinol (Lausanne), 2014, 5: 4

    Google Scholar 

  154. Farahbakhshian E, Verstegen MM, Visser TP, Kheradmandkia S, Geerts D, Arshad S, Riaz N, Grosveld F, van Til NP, Meijerink JP. Angiopoietin-like protein 3 promotes preservation of stemness during ex vivo expansion of murine hematopoietic stem cells. PLoS One, 2014, 9: e105642

    Google Scholar 

  155. Lin MI, Price EN, Boatman S, Hagedorn EJ, Trompouki E, Satishchandran S, Carspecken CW, Uong A, DiBiase A, Yang S, Canver MC, Dahlberg A, Lu Z, Zhang CC, Orkin SH, Bernstein ID, Aster JC, White RM, Zon LI. Angiopoietin-like proteins stimulate HSPC development through interaction with notch receptor signaling. Elife, 2015, 4

    Google Scholar 

  156. Deng M, Lu Z, Zheng J, Wan X, Chen X, Hirayasu K, Sun H, Lam Y, Chen L, Wang Q, Song C, Huang N, Gao GF, Jiang Y, Arase H, Zhang CC. A motif in LILRB2 critical for Angptl2 binding and activation. Blood, 2014, 124: 924–935

    PubMed  CAS  PubMed Central  Google Scholar 

  157. Kozik P, Francis RW, Seaman MN, Robinson MS. A screen for endocytic motifs. Traffic, 2010, 11: 843–855

    PubMed  CAS  PubMed Central  Google Scholar 

  158. Kubota Y. Unveiling Angptl2, a rising HSC expander. Blood, 2014, 124: 833–834

    PubMed  CAS  PubMed Central  Google Scholar 

  159. Himburg HA, Harris JR, Ito T, Daher P, Russell JL, Quarmyne M, Doan PL, Helms K, Nakamura M, Fixsen E, Herradon G, Reya T, Chao NJ, Harroch S, Chute JP. Pleiotrophin regulates the retention and self-renewal of hematopoietic stem cells in the bone marrow vascular niche. Cell Rep, 2012, 2: 964–975

    PubMed  CAS  PubMed Central  Google Scholar 

  160. Himburg HA, Yan X, Doan PL, Quarmyne M, Micewicz E, McBride W, Chao NJ, Slamon DJ, Chute JP. Pleiotrophin mediates hematopoietic regeneration via activation of RAS. J Clin Invest, 2014, 124: 4753–4758

    PubMed  CAS  PubMed Central  Google Scholar 

  161. Amsellem S, Pflumio F, Bardinet D, Izac B, Charneau P, Romeo PH, Dubart-Kupperschmitt A, Fichelson S. Ex vivo expansion of human hematopoietic stem cells by direct delivery of the HOXB4 homeoprotein. Nat Med, 2003, 9: 1423–1427

    PubMed  CAS  Google Scholar 

  162. Domashenko AD, Danet-Desnoyers G, Aron A, Carroll MP, Emerson SG. TAT-mediated transduction of NF-Ya peptide induces the ex vivo proliferation and engraftment potential of human hematopoietic progenitor cells. Blood, 2010, 116: 2676–2683

    PubMed  CAS  PubMed Central  Google Scholar 

  163. Xia L, McDaniel JM, Yago T, Doeden A, McEver RP. Surface fucosylation of human cord blood cells augments binding to P-selectin and E-selectin and enhances engraftment in bone marrow. Blood, 2004, 104: 3091–3096

    PubMed  CAS  Google Scholar 

  164. Wan X, Sato H, Miyaji H, McDaniel JM, Wang Y, Kaneko E, Gibson B, Mehta-D’Souza P, Chen Y, Dozmorov M, Miller LP, Goodman J, Sun Z, Xia L. Fucosyltransferase VII improves the function of selectin ligands on cord blood hematopoietic stem cells. Glycobiology, 2013, 23: 1184–1191

    PubMed  CAS  PubMed Central  Google Scholar 

  165. Popat UR, Oran B, Hosing CM, Kebriaei P, Rezvani Kea. Ex vivo fucosylation of cord blood accelerates neutrophil and platelet engraftment. In: Proceeding of 55th ASH Annual Meeting and Exposition Abstract. New Orleans. Washington: American Society of Hematology, 2013, 691

    Google Scholar 

  166. Ratajczak MZ, Reca R, Wysoczynski M, Kucia M, Baran JT, Allendorf DJ, Ratajczak J, Ross GD. Transplantation studies in C3-deficient animals reveal a novel role of the third complement component (C3) in engraftment of bone marrow cells. Leukemia, 2004, 18: 1482–1490

    PubMed  CAS  Google Scholar 

  167. Brunstein CG, McKenna DH, DeFor TE, Sumstad D, Paul P, Weisdorf DJ, Ratajczak M, Laughlin MJ, Wagner JE. Complement fragment 3a priming of umbilical cord blood progenitors: safety profile. Biol Blood Marrow Transplant, 2013, 19: 1474–1479

    PubMed  CAS  PubMed Central  Google Scholar 

  168. Campbell TB, Hangoc G, Liu Y, Pollok K, Broxmeyer HE. Inhibition of CD26 in human cord blood CD34+ cells enhances their engraftment of nonobese diabetic/severe combined immunodeficiency mice. Stem Cells Dev, 2007, 16: 347–354

    PubMed  CAS  Google Scholar 

  169. Christopherson KW, 2nd, Paganessi LA, Napier S, Porecha NK. CD26 inhibition on CD34+ or lineage- human umbilical cord blood donor hematopoietic stem cells/hematopoietic progenitor cells improves long-term engraftment into NOD/SCID/Beta2null immunodeficient mice. Stem Cells Dev, 2007, 16: 355–360

    PubMed  CAS  Google Scholar 

  170. Christopherson KW 2nd, Hangoc G, Mantel CR, Broxmeyer HE. Modulation of hematopoietic stem cell homing and engraftment by CD26. Science, 2004, 305: 1000–1003

    PubMed  CAS  Google Scholar 

  171. Velez de Mendizabal N, Strother RM, Farag SS, Broxmeyer HE, Messina-Graham S, Chitnis SD, Bies RR. Modelling the sitagliptin effect on dipeptidyl peptidase-4 activity in adults with haematological malignancies after umbilical cord blood haematopoietic cell transplantation. Clin Pharmacokinet, 2014, 53: 247–259

    PubMed  CAS  Google Scholar 

  172. Farag SS, Srivastava S, Messina-Graham S, Schwartz J, Robertson MJ, Abonour R, Cornetta K, Wood L, Secrest A, Strother RM, Jones DR, Broxmeyer HE. In vivo DPP-4 inhibition to enhance engraftment of single-unit cord blood transplants in adults with hematological malignancies. Stem Cells Dev, 2013, 22: 1007–1015

    PubMed  CAS  PubMed Central  Google Scholar 

  173. Purton LE, Bernstein ID, Collins SJ. All-trans retinoic acid enhances the long-term repopulating activity of cultured hematopoietic stem cells. Blood, 2000, 95: 470–477

    PubMed  CAS  Google Scholar 

  174. Tsai S, Bartelmez S, Sitnicka E, Collins S. Lymphohematopoietic progenitors immortalized by a retroviral vector harboring a dominant-negative retinoic acid receptor can recapitulate lymphoid, myeloid, and erythroid development. Genes Dev, 1994, 8: 2831–2841

    PubMed  CAS  Google Scholar 

  175. Chute JP, Muramoto GG, Whitesides J, Colvin M, Safi R, Chao NJ, McDonnell DP. Inhibition of aldehyde dehydrogenase and retinoid signaling induces the expansion of human hematopoietic stem cells. Proc Natl Acad Sci USA, 2006, 103: 11707–11712

    PubMed  CAS  PubMed Central  Google Scholar 

  176. Ghiaur G, Yegnasubramanian S, Perkins B, Gucwa JL, Gerber JM, Jones RJ. Regulation of human hematopoietic stem cell self-renewal by the microenvironment’s control of retinoic acid signaling. Proc Natl Acad Sci USA, 2013, 110: 16121–16126

    PubMed  CAS  PubMed Central  Google Scholar 

  177. Peled T, Landau E, Mandel J, Glukhman E, Goudsmid NR, Nagler A, Fibach E. Linear polyamine copper chelator tetraethylenepentamine augments long-term ex vivo expansion of cord blood-derived CD34+ cells and increases their engraftment potential in NOD/SCID mice. Exp Hematol, 2004, 32: 547–555

    PubMed  CAS  Google Scholar 

  178. Peled T, Glukhman E, Hasson N, Adi S, Assor H, Yudin D, Landor C, Mandel J, Landau E, Prus E, Nagler A, Fibach E. Chelatable cellular copper modulates differentiation and self-renewal of cord blood-derived hematopoietic progenitor cells. Exp Hematol, 2005, 33: 1092–1100

    PubMed  CAS  Google Scholar 

  179. de Lima M, McMannis J, Gee A, Komanduri K, Couriel D, Andersson BS, Hosing C, Khouri I, Jones R, Champlin R, Karandish S, Sadeghi T, Peled T, Grynspan F, Daniely Y, Nagler A, Shpall EJ. Transplantation of ex vivo expanded cord blood cells using the copper chelator tetraethylenepentamine: a phase I/II clinical trial. Bone Marrow Transplant, 2008, 41: 771–778

    PubMed  PubMed Central  Google Scholar 

  180. Chaurasia P, Gajzer DC, Schaniel C, D’Souza S, Hoffman R. Epigenetic reprogramming induces the expansion of cord blood stem cells. J Clin Invest, 2014, 124: 2378–2395

    PubMed  CAS  PubMed Central  Google Scholar 

  181. Young JC, Wu S, Hansteen G, Du C, Sambucetti L, Remiszewski S, O’Farrell AM, Hill B, Lavau C, Murray LJ. Inhibitors of histone deacetylases promote hematopoietic stem cell self-renewal. Cytotherapy, 2004, 6: 328–336

    PubMed  CAS  Google Scholar 

  182. Chen X, Skutt-Kakaria K, Davison J, Ou YL, Choi E, Malik P, Loeb K, Wood B, Georges G, Torok-Storb B, Paddison PJ. G9a/GLP-dependent histone H3K9me2 patterning during human hematopoietic stem cell lineage commitment. Genes Dev, 2012, 26: 2499–2511

    PubMed  CAS  PubMed Central  Google Scholar 

  183. Araki H, Yoshinaga K, Boccuni P, Zhao Y, Hoffman R, Mahmud N. Chromatin-modifying agents permit human hematopoietic stem cells to undergo multiple cell divisions while retaining their repopulating potential. Blood, 2007, 109: 3570–3578

    PubMed  CAS  Google Scholar 

  184. Milhem M, Mahmud N, Lavelle D, Araki H, DeSimone J, Saunthararajah Y, Hoffman R. Modification of hematopoietic stem cell fate by 5aza 2'deoxycytidine and trichostatin A. Blood, 2004, 103: 4102–4110

    PubMed  CAS  Google Scholar 

  185. Mahmud N, Petro B, Baluchamy S, Li X, Taioli S, Lavelle D, Quigley JG, Suphangul M, Araki H. Differential effects of epigenetic modifiers on the expansion and maintenance of human cord blood stem/progenitor cells. Biol Blood Marrow Transplant, 2014, 20: 480–489

    PubMed  CAS  Google Scholar 

  186. Iiyama M, Kakihana K, Kurosu T, Miura O. Reactive oxygen species generated by hematopoietic cytokines play roles in activation of receptor-mediated signaling and in cell cycle progression. Cell Signal, 2006, 18: 174–182

    PubMed  CAS  Google Scholar 

  187. Miyamoto K, Araki KY, Naka K, Arai F, Takubo K, Yamazaki S, Matsuoka S, Miyamoto T, Ito K, Ohmura M, Chen C, Hosokawa K, Nakauchi H, Nakayama K, Nakayama KI, Harada M, Motoyama N, Suda T, Hirao A. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell, 2007, 1: 101–112

    PubMed  CAS  Google Scholar 

  188. Zou J, Zou P, Wang J, Li L, Wang Y, Zhou D, Liu L. Inhibition of p38 MAPK activity promotes ex vivo expansion of human cord blood hematopoietic stem cells. Ann Hematol, 2012, 91: 813–823

    PubMed  CAS  PubMed Central  Google Scholar 

  189. Peled T, Shoham H, Aschengrau D, Yackoubov D, Frei G, Rosenheimer G N, Lerrer B, Cohen HY, Nagler A, Fibach E, Peled A. Nicotinamide, a SIRT1 inhibitor, inhibits differentiation and facilitates expansion of hematopoietic progenitor cells with enhanced bone marrow homing and engraftment. Exp Hematol, 2012, 40: 342–355

    PubMed  CAS  Google Scholar 

  190. Horwitz ME, Chao NJ, Rizzieri DA, Long GD, Sullivan KM, Gasparetto C, Chute JP, Morris A, McDonald C, Waters-Pick B, Stiff P, Wease S, Peled A, Snyder D, Cohen EG, Shoham H, Landau E, Friend E, Peleg I, Aschengrau D, Yackoubov D, Kurtzberg J, Peled T. Umbilical cord blood expansion with nicotinamide provides long-term multilineage engraftment. J Clin Invest, 2014, 124: 3121–3128

    PubMed  CAS  PubMed Central  Google Scholar 

  191. Boitano AE, Wang J, Romeo R, Bouchez LC, Parker AE, Sutton SE, Walker JR, Flaveny CA, Perdew GH, Denison MS, Schultz PG, Cooke MP. Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science, 2010, 329: 1345–1348

    PubMed  CAS  PubMed Central  Google Scholar 

  192. Fares I, Chagraoui J, Gareau Y, Gingras S, Ruel R, Mayotte N, Csaszar E, Knapp DJ, Miller P, Ngom M, Imren S, Roy DC, Watts KL, Kiem HP, Herrington R, Iscove NN, Humphries RK, Eaves CJ, Cohen S, Marinier A, Zandstra PW, Sauvageau G. Cord blood expansion. Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal. Science, 2014, 345: 1509–1512

    PubMed  CAS  Google Scholar 

  193. Wagner JE, Brunstein C, McKenna D, Sumstad D, Maahs S, Laughlin M, Perry MS, Boitano AE, Cooke MP, Bleul CC. StemRegenin-1 (SR1) Expansion Culture Abrogates the Engraftment Barrier Associated with Umbilical Cord Blood Transplantation (UCBT). 56th ASH Annual Meeting and Exposition Abstract. San Francisco. Washington: American Society of Hematology, 2014, 728

    Google Scholar 

  194. Goessling W, Allen RS, Guan X, Jin P, Uchida N, Dovey M, Harris JM, Metzger ME, Bonifacino AC, Stroncek D, Stegner J, Armant M, Schlaeger T, Tisdale JF, Zon LI, Donahue RE, North TE. Prostaglandin E2 enhances human cord blood stem cell xenotransplants and shows long-term safety in preclinical nonhuman primate transplant models. Cell Stem Cell, 2011, 8: 445–458

    PubMed  CAS  PubMed Central  Google Scholar 

  195. Cutler C, Multani P, Robbins D, Kim HT, Le T, Hoggatt J, Pelus LM, Desponts C, Chen YB, Rezner B, Armand P, Koreth J, Glotzbecker B, Ho VT, Alyea E, Isom M, Kao G, Armant M, Silberstein L, Hu P, Soiffer RJ, Scadden DT, Ritz J, Goessling W, North TE, Mendlein J, Ballen K, Zon LI, Antin JH, Shoemaker DD. Prostaglandinmodulated umbilical cord blood hematopoietic stem cell transplantation. Blood, 2013, 122: 3074–3081

    PubMed  CAS  PubMed Central  Google Scholar 

  196. de Graaf CA, Metcalf D. Thrombopoietin and hematopoietic stem cells. Cell Cycle, 2011, 10: 1582–1589

    PubMed  PubMed Central  Google Scholar 

  197. Nishino T, Miyaji K, Ishiwata N, Arai K, Yui M, Asai Y, Nakauchi H, Iwama A. Ex vivo expansion of human hematopoietic stem cells by a small-molecule agonist of c-MPL. Exp Hematol, 2009, 37: 1364–1377

    PubMed  CAS  Google Scholar 

  198. Noda S, Horiguchi K, Ichikawa H, Miyoshi H. Repopulating activity of ex vivo-expanded murine hematopoietic stem cells resides in the CD48-c-Kit+Sca-1+lineage marker- cell population. Stem Cells, 2008, 26: 646–655

    PubMed  Google Scholar 

  199. Dorrell C, Gan OI, Pereira DS, Hawley RG, Dick JE. Expansion of human cord blood CD34+CD38- cells in ex vivo culture during retroviral transduction without a corresponding increase in SCID repopulating cell (SRC) frequency: dissociation of SRC phenotype and function. Blood, 2000, 95: 102–110

    PubMed  CAS  Google Scholar 

  200. Notta F, Doulatov S, Laurenti E, Poeppl A, Jurisica I, Dick JE. Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science, 2011, 333: 218–221

    PubMed  CAS  Google Scholar 

  201. Genovese P, Schiroli G, Escobar G, Di Tomaso T, Firrito C, Calabria A, Moi D, Mazzieri R, Bonini C, Holmes MC, Gregory PD, van der Burg M, Gentner B, Montini E, Lombardo A, Naldini L. Targeted genome editing in human repopulating haematopoietic stem cells. Nature, 2014, 510: 235–240

    PubMed  CAS  PubMed Central  Google Scholar 

Download references