link.springer.com

Electronic Cigarettes: Their Constituents and Potential Links to Asthma - Current Allergy and Asthma Reports

  • ️Jaspers, Ilona
  • ️Thu Oct 05 2017
  • Organization WH. WHO global report on mortality attributable to tobacco. 2012.

  • Courtney R. The health consequences of smoking—50 years of progress: a report of the surgeon general, 2014 US Department of Health and Human Services Atlanta, GA: Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health, 20141081 pp. Online (grey literature): http://www/. surgeongeneral. gov/library/reports/50-years-of-progress. Drug Alcohol Rev. 2015;34(6):694–5.

    Article  Google Scholar 

  • Garrett BE, Dube S, Trosclair A, Caraballo R, Pechacek T. Cigarette smoking-United States, 1965–2008. MMWR Surveill Summ. 2011;60:109–13.

    Google Scholar 

  • Eaton DK, Kann L, Kinchen S, Shanklin S, Flint KH, Hawkins J, et al. Youth risk behavior surveillance—United States, 2011. Morb Mortal Wkly Rep Surveill Summ. 2012;61(4):1–162.

    Google Scholar 

  • Hopkins DP, Razi S, Leeks KD, Priya Kalra G, Chattopadhyay SK, Soler RE, et al. Smokefree policies to reduce tobacco use: a systematic review. Am J Prev Med. 2010;38(2 Suppl):S275–89. https://doi.org/10.1016/j.amepre.2009.10.029.

    Article  PubMed  Google Scholar 

  • Siegel M, Albers AB, Cheng DM, Hamilton WL, Biener L. Local restaurant smoking regulations and the adolescent smoking initiation process: results of a multilevel contextual analysis among Massachusetts youth. Arch Pediatr Adolesc Med. 2008;162(5):477–83. https://doi.org/10.1001/archpedi.162.5.477.

    Article  PubMed  PubMed Central  Google Scholar 

  • Elders MJ, Perry CL, Eriksen MP, Giovino GA. The report of the Surgeon General: preventing tobacco use among young people. Am J Public Health. 1994;84(4):543–7.

  • Besaratinia A, Tommasi S. Electronic cigarettes: the road ahead. Prev Med. 2014;66:65–7. https://doi.org/10.1016/j.ypmed.2014.06.014.

    Article  PubMed  Google Scholar 

  • Anand V, McGinty KL, O’Brien K, Guenthner G, Hahn E, Martin CA. E-cigarette use and beliefs among urban public high school students in North Carolina. J Adolesc Health. 2015;57(1):46–51. https://doi.org/10.1016/j.jadohealth.2015.03.018.

  • Amrock SM, Zakhar J, Zhou S, Weitzman M. Perception of e-cigarette harm and its correlation with use among US adolescents. Nicotine Tob Res. 2015;17(3):330–6. https://doi.org/10.1093/ntr/ntu156.

  • Geiss O, Bianchi I, Barrero-Moreno J. Correlation of volatile carbonyl yields emitted by e-cigarettes with the temperature of the heating coil and the perceived sensorial quality of the generated vapours. Int J Hyg Environ Health. 2016;219(3):268–77. https://doi.org/10.1016/j.ijheh.2016.01.004.

    Article  CAS  PubMed  Google Scholar 

  • Kosmider L, Sobczak A, Fik M, Knysak J, Zaciera M, Kurek J, et al. Carbonyl compounds in electronic cigarette vapors: effects of nicotine solvent and battery output voltage. Nicotine Tob Res. 2014;16(10):1319–26. https://doi.org/10.1093/ntr/ntu078.

    Article  PubMed  PubMed Central  Google Scholar 

  • • Sleiman M, Logue JM, Montesinos VN, Russell ML, Litter MI, Gundel LA, et al. Emissions from electronic cigarettes: key parameters affecting the release of harmful chemicals. Environ Sci Technol. 2016;50(17):9644–51. https://doi.org/10.1021/acs.est.6b01741. This study quantified potentially toxic compounds in e-cig aerosol emissions and identified key parameters affecting toxic compound generation, including heating coil configuration and applied voltage.

    Article  CAS  PubMed  Google Scholar 

  • Zezima K. Cigarettes without smoke or regulation. New York Times. 2009;1.

  • •• McNeill A, Brose L, Calder R, Hitchman S, Hajek P, McRobbie H. E-cigarettes: an evidence update. Public Health England. 2015;3. A government report by Public Health England (PHE), an agency of England’s Department of Health, which estimates that e-cigs are 95% less harmful to your health than normal cigarettes and supports the use of e-cigs as effective tobacco cessation and reduction aids.

  • • Zhu SH, Zhuang YL, Wong S, Cummins SE, Tedeschi GJ. E-cigarette use and associated changes in population smoking cessation: evidence from US current population surveys. BMJ. 2017;358:j3262. https://doi.org/10.1136/bmj.j3262. This study used survey data from the largest representative sample of e-cig users among the US population to show that that e-cig use is not only associated with a higher smoking cessation rate at the individual user level but also at the population level.

    Article  PubMed  PubMed Central  Google Scholar 

  • • Polosa R, Morjaria J, Caponnetto P, Caruso M, Strano S, Battaglia E, et al. Effect of smoking abstinence and reduction in asthmatic smokers switching to electronic cigarettes: evidence for harm reversal. Int J Environ Res Public Health. 2014;11(5):4965–77. https://doi.org/10.3390/ijerph110504965. A retrospective study which identifies improvements in asthma control, airway hyper-responsiveness, and pulmonary function in asthmatic smokers who quit or dramatically reduced their tobacco consumption by switching to e-cigs.

    Article  PubMed  PubMed Central  Google Scholar 

  • Polosa R, Morjaria JB, Caponnetto P, Caruso M, Campagna D, Amaradio MD, et al. Persisting long term benefits of smoking abstinence and reduction in asthmatic smokers who have switched to electronic cigarettes. Discov Med. 2016;21(114):99–108.

    PubMed  Google Scholar 

  • Polosa R, Campagna D, Sands MF. Counseling patients with asthma and allergy about electronic cigarettes: an evidence-based approach. Ann Allergy Asthma Immunol. 2016;116(2):106–11. https://doi.org/10.1016/j.anai.2015.10.012.

    Article  PubMed  Google Scholar 

  • •• Fedele DA, Barnett TE, Dekevich D, Gibson-Young LM, Martinasek M, Jagger MA. Prevalence of and beliefs about electronic cigarettes and hookah among high school students with asthma. Ann Epidemiol. 2016;26(12):865–9. https://doi.org/10.1016/j.annepidem.2016.10.004. This study used 2014 Florida Youth Tobacco Survey data ( n = 32,921) to assess current cigarette, hookah, and e-cig use among high school students with and without asthma. Adolescents with asthma had a higher prevalence of current hookah and e-cig use, reported positive beliefs about tobacco products, and were more likely to live with individuals who used cigarettes, hookah, and e-cig compared with their peers.

    Article  PubMed  Google Scholar 

  • •• Choi K, Bernat D. E-cigarette use among Florida youth with and without asthma. Am J Prev Med. 2016;51(4):446–53. https://doi.org/10.1016/j.amepre.2016.03.010. A study which used the 2012 Florida Youth Tobacco Survey data ( n = 36,085) to assess the prevalence of e-cig use among asthmatic youth and examine the associations between e-cig use, susceptibility to cigarette smoking, and asthma attack. The authors conclude that e-cig use is more common among asthmatic youth and is associated with increased susceptibility to cigarette smoking.

    Article  PubMed  PubMed Central  Google Scholar 

  • •• Larsen K, GEJ F, Boak A, Hamilton HA, Mann RE, Irving HM, et al. Looking beyond cigarettes: are Ontario adolescents with asthma less likely to smoke e-cigarettes, marijuana, waterpipes or tobacco cigarettes? Respir Med. 2016;120:10–5. https://doi.org/10.1016/j.rmed.2016.09.013. This study used the 2013 Ontario Student Drug Use and Health Survey data ( n = 6,159 high school students) to determine whether asthmatic students in Ontario smoke cigarettes, waterpipes, marijuana, or e-cig more or less than those without asthma. Students with asthma have higher odds of using e-cigs but not cigarettes, waterpipes, or marijuana, when compared to their non-asthmatic peers.

    Article  PubMed  Google Scholar 

  • •• Cho JH, Paik SY. Association between electronic cigarette use and asthma among high school students in South Korea. PLoS One. 2016;11(3):e0151022. https://doi.org/10.1371/journal.pone.0151022. This cross-sectional study investigated the association between e-cig use and asthma in 35,904 high school students. The authors report that e-cig users have an increased association with asthma and are more likely to have had days absent from school due to severe asthma symptoms.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • •• Boulay ME, Henry C, Bosse Y, Boulet LP, Morissette MC. Acute effects of nicotine-free and flavour-free electronic cigarette use on lung functions in healthy and asthmatic individuals. Respir Res. 2017;18(1):33. https://doi.org/10.1186/s12931-017-0518-9. A crossover, placebo-controlled study investigating the effects of a 1-h acute vaping session of nicotine- and flavor-free e-liquid on the pulmonary functions and respiratory mechanics of healthy and asthmatic individuals. Acute exposure to propylene glycol and glycerin aerosol in a controlled environment does not significantly impact pulmonary function or symptoms in both healthy and asthmatic subjects.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferrari M, Zanasi A, Nardi E, Morselli Labate AM, Ceriana P, Balestrino A, et al. Short-term effects of a nicotine-free e-cigarette compared to a traditional cigarette in smokers and non-smokers. BMC Pulm Med. 2015;15:120. https://doi.org/10.1186/s12890-015-0106-z.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flouris AD, Chorti MS, Poulianiti KP, Jamurtas AZ, Kostikas K, Tzatzarakis MN, et al. Acute impact of active and passive electronic cigarette smoking on serum cotinine and lung function. Inhal Toxicol. 2013;25(2):91–101. https://doi.org/10.3109/08958378.2012.758197.

    Article  CAS  PubMed  Google Scholar 

  • Varughese S, Teschke K, Brauer M, Chow Y, van Netten C, Kennedy SM. Effects of theatrical smokes and fogs on respiratory health in the entertainment industry. Am J Ind Med. 2005;47(5):411–8. https://doi.org/10.1002/ajim.20151.

    Article  PubMed  Google Scholar 

  • • Wang P, Chen W, Liao J, Matsuo T, Ito K, Fowles J, et al. A device-independent evaluation of carbonyl emissions from heated electronic cigarette solvents. PLoS One. 2017;12(1):e0169811. https://doi.org/10.1371/journal.pone.0169811. Quantitation of toxic volatile carbonyl compounds produced when vaping propylene glycol and glycerin under precisely controlled temperatures in the absence of nicotine and flavor additives.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao Y, Liang W, Zhu L, Duan Y, Jin Y, He L. Relationship between the concentration of formaldehyde in the air and asthma in children: a meta-analysis. Int J Clin Exp Med. 2015;8(6):8358–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tillett T. Formaldehyde exposure among children: a potential building block of asthma. Environ Health Perspect. 2010;118(3):A 131. https://doi.org/10.1289/ehp.118-a131b.

    Article  PubMed  Google Scholar 

  • Golden R, Holm S. Indoor air quality and asthma: has unrecognized exposure to acrolein confounded results of previous studies? Dose Response. 2017;15(1):1559325817691159. https://doi.org/10.1177/1559325817691159.

    Article  PubMed  PubMed Central  Google Scholar 

  • Prieto L, Gutierrez V, Cervera A, Linana J. Airway obstruction induced by inhaled acetaldehyde in asthma: repeatability relationship to adenosine 5′-monophosphate responsiveness. J Investig Allergol Clin Immunol. 2002;12(2):91–8.

    CAS  PubMed  Google Scholar 

  • Yildiz D. Nicotine, its metabolism and an overview of its biological effects. Toxicon. 2004;43(6):619–32. https://doi.org/10.1016/j.toxicon.2004.01.017.

    Article  CAS  PubMed  Google Scholar 

  • Benowitz NL, Hukkanen J, Jacob III P. Nicotine chemistry, metabolism, kinetics and biomarkers. Nicotine psychopharmacology. Springer; 2009. p. 29–60.

  • D’alessandro A, Boeckelmann I, Hammwhöner M, Goette A. Nicotine, cigarette smoking and cardiac arrhythmia: an overview. Eur J Prev Cardiol. 2012;19(3):297–305.

    Article  PubMed  Google Scholar 

  • Kershbaum A, Bellet S, Dickstein ER, Feinbergl J. Effect of cigarette smoking and nicotine on serum free fatty acids based on a study in the human subject and the experimental animal. Circ Res. 1961;9:631–8.

    Article  CAS  PubMed  Google Scholar 

  • Kershbaum A, Osada H, Pappajohn DJ, Bellet S. Effect of nicotine on the mobilization of free fatty acids from adipose tissue in vitro. Experientia. 1969;25(2):128.

    Article  CAS  PubMed  Google Scholar 

  • Carlson LA, Orö L. The effect of nicotinic acid on the plasma free fatty acids demonstration of a metabolic type of sympathicolysis. J Intern Med. 1962;172(6):641–5.

    CAS  Google Scholar 

  • Omvik P. How smoking affects blood pressure. Blood Press. 1996;5(2):71–7.

    Article  CAS  PubMed  Google Scholar 

  • Wright S, Zhong J, Zheng H, Larrick J. Nicotine inhibition of apoptosis suggests a role in tumor promotion. FASEB J. 1993;7(11):1045–51.

    CAS  PubMed  Google Scholar 

  • Walker LM, Preston MR, Magnay JL, Thomas PB, El Haj AJ. Nicotinic regulation of c-fos and osteopontin expression in human-derived osteoblast-like cells and human trabecular bone organ culture. Bone. 2001;28(6):603–8.

    Article  CAS  PubMed  Google Scholar 

  • Nisell M, Nomikos GG, Chergui K, Grillner P, Svensson TH. Chronic nicotine enhances basal and nicotine-induced Fos immunoreactivity preferentially in the medial prefrontal cortex of the rat. Neuropsychopharmacology. 1997;17(3):151–61. https://doi.org/10.1016/S0893-133X(97)00040-7.

    Article  CAS  PubMed  Google Scholar 

  • Whitley D, Goldberg SP, Jordan WD. Heat shock proteins: a review of the molecular chaperones. J Vasc Surg. 1999;29(4):748–51.

    Article  CAS  PubMed  Google Scholar 

  • Doolittle DJ, Winegar R, Lee CK, Caldwell WS, Hayes AW, Donald deBethizy J. The genotoxic potential of nicotine and its major metabolites. Mutat Res Genet Toxicol. 1995;344(3–4):95–102.

    Article  CAS  Google Scholar 

  • Rehan VK, Liu J, Naeem E, Tian J, Sakurai R, Kwong K, et al. Perinatal nicotine exposure induces asthma in second generation offspring. BMC Med. 2012;10:129. https://doi.org/10.1186/1741-7015-10-129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Sakurai R, Rehan VK. PPAR-gamma agonist rosiglitazone reverses perinatal nicotine exposure-induced asthma in rat offspring. Am J Physiol Lung Cell Mol Physiol. 2015;308(8):L788–96. https://doi.org/10.1152/ajplung.00234.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehan VK, Liu J, Sakurai R, Torday JS. Perinatal nicotine-induced transgenerational asthma. Am J Physiol Lung Cell Mol Physiol. 2013;305(7):L501–7. https://doi.org/10.1152/ajplung.00078.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benowitz NL, Henningfield JE. Reducing the nicotine content to make cigarettes less addictive. Tob Control. 2013;22(suppl 1):i14–i7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Galle-Treger L, Suzuki Y, Patel N, Sankaranarayanan I, Aron JL, Maazi H, et al. Nicotinic acetylcholine receptor agonist attenuates ILC2-dependent airway hyperreactivity. Nat Commun. 2016;7:13202. https://doi.org/10.1038/ncomms13202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mabley J, Gordon S, Pacher P. Nicotine exerts an anti-inflammatory effect in a murine model of acute lung injury. Inflammation. 2011;34(4):231–7. https://doi.org/10.1007/s10753-010-9228-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalra R, Singh SP, Pena-Philippides JC, Langley RJ, Razani-Boroujerdi S, Sopori ML. Immunosuppressive and anti-inflammatory effects of nicotine administered by patch in an animal model. Clin Diagn Lab Immunol. 2004;11(3):563–8. https://doi.org/10.1128/CDLI.11.3.563-568.2004.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalra R, Singh SP, Kracko D, Matta SG, Sharp BM, Sopori ML. Chronic self-administration of nicotine in rats impairs T cell responsiveness. J Pharmacol Exp Ther. 2002;302(3):935–9.

    Article  CAS  PubMed  Google Scholar 

  • Sopori ML, Kozak W, Savage SM, Geng Y, Soszynski D, Kluger MJ, et al. Effect of nicotine on the immune system: possible regulation of immune responses by central and peripheral mechanisms. Psychoneuroendocrinology. 1998;23(2):189–204.

    Article  CAS  PubMed  Google Scholar 

  • Sopori ML, Kozak W, Savage SM, Geng Y, Kluger MJ. Nicotine-induced modulation of T cell function. Implications for inflammation and infection. Adv Exp Med Biol. 1998;437:279–89.

    Article  CAS  PubMed  Google Scholar 

  • Sopori ML, Kozak W. Immunomodulatory effects of cigarette smoke. J Neuroimmunol. 1998;83(1–2):148–56.

    Article  CAS  PubMed  Google Scholar 

  • Bencherif M, Lippiello PM, Lucas R, Marrero MB. Alpha7 nicotinic receptors as novel therapeutic targets for inflammation-based diseases. Cell Mol Life Sci. 2011;68(6):931–49. https://doi.org/10.1007/s00018-010-0525-1.

    Article  CAS  PubMed  Google Scholar 

  • Mishra NC, Rir-Sima-Ah J, Langley RJ, Singh SP, Pena-Philippides JC, Koga T, et al. Nicotine primarily suppresses lung Th2 but not goblet cell and muscle cell responses to allergens. J Immunol. 2008;180(11):7655–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen EY, Sun A, Chen CS, Mintz AJ, Chin WC. Nicotine alters mucin rheological properties. Am J Physiol Lung Cell Mol Physiol. 2014;307(2):L149–57. https://doi.org/10.1152/ajplung.00396.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gundavarapu S, Wilder JA, Mishra NC, Rir-Sima-Ah J, Langley RJ, Singh SP, et al. Role of nicotinic receptors and acetylcholine in mucous cell metaplasia, hyperplasia, and airway mucus formation in vitro and in vivo. J Allergy Clin Immunol. 2012;130(3):770–780 e11. https://doi.org/10.1016/j.jaci.2012.04.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Razani-Boroujerdi S, Singh SP, Knall C, Hahn FF, Pena-Philippides JC, Kalra R, et al. Chronic nicotine inhibits inflammation and promotes influenza infection. Cell Immunol. 2004;230(1):1–9. https://doi.org/10.1016/j.cellimm.2004.07.007.

    Article  CAS  PubMed  Google Scholar 

  • Zhu SH, Sun JY, Bonnevie E, Cummins SE, Gamst A, Yin L, et al. Four hundred and sixty brands of e-cigarettes and counting: implications for product regulation. Tob Control. 2014;23(Suppl 3):iii3–9. https://doi.org/10.1136/tobaccocontrol-2014-051670.

    Article  PubMed  PubMed Central  Google Scholar 

  • Harrell MB, Weaver SR, Loukas A, Creamer M, Marti CN, Jackson CD, et al. Flavored e-cigarette use: characterizing youth, young adult, and adult users. Prev Med Rep. 2017;5:33–40. https://doi.org/10.1016/j.pmedr.2016.11.001.

    Article  CAS  PubMed  Google Scholar 

  • Pepper JK, Ribisl KM, Brewer NT. Adolescents’ interest in trying flavoured e-cigarettes. Tob Control. 2016;25(Suppl 2):ii62–i6. https://doi.org/10.1136/tobaccocontrol-2016-053174.

    Article  CAS  PubMed  Google Scholar 

  • Cobb CO, Hendricks PS, Eissenberg T. Electronic cigarettes and nicotine dependence: evolving products, evolving problems. BMC Med. 2015;13:119. https://doi.org/10.1186/s12916-015-0355-y.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dai H, Hao J. Flavored electronic cigarette use and smoking among youth. Pediatrics. 2016;138:e20162513.

    Article  PubMed  Google Scholar 

  • Zhong J, Cao S, Gong W, Fei F, Wang M. Electronic cigarettes use and intention to cigarette smoking among never-smoking adolescents and young adults: a meta-analysis. Int J Environ Res Public Health. 2016;13(5):pii: E465. https://doi.org/10.3390/ijerph13050465.

  • Padon AA, Maloney EK, Cappella JN. Youth-targeted e-cigarette marketing in the US. Tob Regul Sci. 2017;3(1):95–101.

    Article  PubMed  Google Scholar 

  • Behar RZ, Luo W, Lin SC, Wang Y, Valle J, Pankow JF, et al. Distribution, quantification and toxicity of cinnamaldehyde in electronic cigarette refill fluids and aerosols. Tob Control. 2016;25(Suppl 2):ii94–ii102. https://doi.org/10.1136/tobaccocontrol-2016-053224.

    Article  PubMed  PubMed Central  Google Scholar 

  • Clapp PW, Pawlak EA, Lackey JT, Keating JE, Reeber SL, Glish GL, et al. Flavored e-cigarette liquids and cinnamaldehyde impair respiratory innate immune cell function. Am J Physiol Lung Cell Mol Physiol. 2017; https://doi.org/10.1152/ajplung.00452.2016.

  • Kreiss K, Gomaa A, Kullman G, Fedan K, Simoes EJ, Enright PL. Clinical bronchiolitis obliterans in workers at a microwave-popcorn plant. N Engl J Med. 2002;347(5):330–8. https://doi.org/10.1056/NEJMoa020300.

    Article  PubMed  Google Scholar 

  • van Rooy FG, Rooyackers JM, Prokop M, Houba R, Smit LA, Heederik DJ. Bronchiolitis obliterans syndrome in chemical workers producing diacetyl for food flavorings. Am J Respir Crit Care Med. 2007;176(5):498–504. https://doi.org/10.1164/rccm.200611-1620OC.

    Article  PubMed  CAS  Google Scholar 

  • Barrington-Trimis JL, Samet JM, McConnell R. Flavorings in electronic cigarettes: an unrecognized respiratory health hazard? JAMA. 2014;312(23):2493–4. https://doi.org/10.1001/jama.2014.14830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • •• Farsalinos KE, Kistler KA, Gillman G, Voudris V. Evaluation of electronic cigarette liquids and aerosol for the presence of selected inhalation toxins. Nicotine Tob Res. 2015;17(2):168–74. https://doi.org/10.1093/ntr/ntu176. This study found that diacetyl and acetyl propionyl, known respiratory toxicants, were present in a large proportion of sweet-flavored e-cig liquids. The authors conclude that the use of many of the products evaluated would result in exposures that exceed NIOSH-defined safety levels.

    Article  CAS  PubMed  Google Scholar 

  • Alert N. Preventing Lung Disease in Workers Who Use or Make Flavorings. NIOSH Publication No. 2004-110. 2003.

  • Lopez-Saez MP, Carrillo P, Huertas AJ, Fernandez-Nieto M, Lopez JD. Occupational asthma and dermatitis induced by eugenol in a cleaner. J Investig Allergol Clin Immunol. 2015;25(1):64–5.

    CAS  PubMed  Google Scholar 

  • Quirce S, Fernandez-Nieto M, del Pozo V, Sastre B, Sastre J. Occupational asthma and rhinitis caused by eugenol in a hairdresser. Allergy. 2008;63(1):137–8. https://doi.org/10.1111/j.1398-9995.2007.01525.x.

    CAS  PubMed  Google Scholar 

  • Kern AB. Contact dermatitis from cinnamon. Arch Dermatol. 1960;81:599–600.

    Article  CAS  PubMed  Google Scholar 

  • Vandersall A, Katta R. Eyelid dermatitis as a manifestation of systemic contact dermatitis to cinnamon. Dermatitis. 2015;26(4):189. https://doi.org/10.1097/DER.0000000000000126.

    Article  PubMed  Google Scholar 

  • Lauriola MM, De Bitonto A, Sena P. Allergic contact dermatitis due to cinnamon oil in galenic vaginal suppositories. Acta Derm Venereol. 2010;90(2):187–8. https://doi.org/10.2340/00015555-0782.

    Article  PubMed  Google Scholar 

  • Ackermann L, Aalto-Korte K, Jolanki R, Alanko K. Occupational allergic contact dermatitis from cinnamon including one case from airborne exposure. Contact Dermatitis. 2009;60(2):96–9. https://doi.org/10.1111/j.1600-0536.2008.01486.x.

    Article  PubMed  Google Scholar 

  • Hartmann K, Hunzelmann N. Allergic contact dermatitis from cinnamon as an odour-neutralizing agent in shoe insoles. Contact Dermatitis. 2004;50(4):253–4. https://doi.org/10.1111/j.0105-1873.2004.00301.x.

    Article  PubMed  Google Scholar 

  • Sanchez-Perez J, Garcia-Diez A. Occupational allergic contact dermatitis from eugenol, oil of cinnamon and oil of cloves in a physiotherapist. Contact Dermatitis. 1999;41(6):346–7.

    Article  CAS  PubMed  Google Scholar 

  • De Benito V, Alzaga R. Occupational allergic contact dermatitis from cassia (Chinese cinnamon) as a flavouring agent in coffee. Contact Dermatitis. 1999;40(3):165.

    PubMed  Google Scholar 

  • Uragoda CG. Asthma and other symptoms in cinnamon workers. Br J Ind Med. 1984;41(2):224–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • •• Kosmider L, Sobczak A, Prokopowicz A, Kurek J, Zaciera M, Knysak J, et al. Cherry-flavoured electronic cigarettes expose users to the inhalation irritant, benzaldehyde. Thorax. 2016;71(4):376–7. https://doi.org/10.1136/thoraxjnl-2015-207895. This study measured benzaldehyde, a known respiratory irritant, in aerosol generated from flavored e-cigs purchased online. Benzaldehyde was detected in 108 out of 145 products.

    Article  PubMed  PubMed Central  Google Scholar 

  • Laham S, Broxup B, Robinet M, Potvin M, Schrader K. Subacute inhalation toxicity of benzaldehyde in the Sprague-Dawley rat. Am Ind Hyg Assoc J. 1991;52(12):503–10. https://doi.org/10.1080/15298669191365126.

    Article  CAS  PubMed  Google Scholar 

  • Andersen A. Final report on the safety assessment of benzaldehyde. Int J Toxicol. 2006;25(Suppl 1):11–27. https://doi.org/10.1080/10915810600716612.

    CAS  PubMed  Google Scholar 

  • Leikauf GD. 12 formaldehyde and other aldehydes. Environmental toxicants: human exposures and their health effects. 2000:409.

  • Leikauf GD. Mechanisms of aldehyde-induced bronchial reactivity: role of airway epithelium. Res Rep Health Eff Inst. 1992;49:1–35.

    Google Scholar 

  • Leikauf GD. Hazardous air pollutants and asthma. Environ Health Perspect. 2002;110(Suppl 4):505–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Annesi-Maesano I, Hulin M, Lavaud F, Raherison C, Kopferschmitt C, de Blay F, et al. Poor air quality in classrooms related to asthma and rhinitis in primary schoolchildren of the French 6 Cities Study. Thorax. 2012;67(8):682–8. https://doi.org/10.1136/thoraxjnl-2011-200391.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jang TY, Park CS, Kim KS, Heo MJ, Kim YH. Benzaldehyde suppresses murine allergic asthma and rhinitis. Int Immunopharmacol. 2014;22(2):444–50. https://doi.org/10.1016/j.intimp.2014.07.029.

    Article  CAS  PubMed  Google Scholar 

  • Spurlock BW, Dailey TM. Shortness of (fresh) breath--toothpaste-induced bronchospasm. N Engl J Med. 1990;323(26):1845–6.

    CAS  PubMed  Google Scholar 

  • Subiza J, Subiza JL, Valdivieso R, Escribano PM, Garcia R, Jerez M, et al. Toothpaste flavor-induced asthma. J Allergy Clin Immunol. 1992;90(6 Pt 1):1004–6.

    Article  CAS  PubMed  Google Scholar 

  • Paiva M, Piedade S, Gaspar A. Toothpaste-induced anaphylaxis caused by mint (Mentha) allergy. Allergy. 2010;65(9):1201–2. https://doi.org/10.1111/j.1398-9995.2010.02329.x.

    CAS  PubMed  Google Scholar 

  • Plevkova J, Kollarik M, Poliacek I, Brozmanova M, Surdenikova L, Tatar M, et al. The role of trigeminal nasal TRPM8-expressing afferent neurons in the antitussive effects of menthol. J Appl Physiol (1985). 2013;115(2):268–74. https://doi.org/10.1152/japplphysiol.01144.2012.

    Article  CAS  Google Scholar 

  • Willis DN, Liu B, Ha MA, Jordt SE, Morris JB. Menthol attenuates respiratory irritation responses to multiple cigarette smoke irritants. FASEB J. 2011;25(12):4434–44. https://doi.org/10.1096/fj.11-188383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • •• Tierney PA, Karpinski CD, Brown JE, Luo W, Pankow JF. Flavour chemicals in electronic cigarette fluids. Tob Control. 2016;25(e1):e10–5. https://doi.org/10.1136/tobaccocontrol-2014-052175. This study quantified flavoring chemicals in 30 popular e-cig liquids. Many of the e-liquids contained aldehyde flavoring agents that made up 1 to 4% of the total e-liquid volume. The authors conclude that concentrations of some flavor chemicals in e-cigs are sufficiently high for inhalation exposure by vaping to be of toxicological concern.

    Article  PubMed  Google Scholar 

  • Berridge MJ, Lipp P, Bootman MD. Signal transduction. The calcium entry pas de deux. Science. 2000;287(5458):1604–5.

    Article  CAS  PubMed  Google Scholar 

  • Montell C. The TRP superfamily of cation channels. Sci STKE. 2005;2005(272):re3. https://doi.org/10.1126/stke.2722005re3.

    PubMed  Google Scholar 

  • Geppetti P, Materazzi S, Nicoletti P. The transient receptor potential vanilloid 1: role in airway inflammation and disease. Eur J Pharmacol. 2006;533(1–3):207–14. https://doi.org/10.1016/j.ejphar.2005.12.063.

    Article  CAS  PubMed  Google Scholar 

  • Jia Y, Lee LY. Role of TRPV receptors in respiratory diseases. Biochim Biophys Acta. 2007;1772(8):915–27. https://doi.org/10.1016/j.bbadis.2007.01.013.

    Article  CAS  PubMed  Google Scholar 

  • Takemura M, Quarcoo D, Niimi A, Dinh QT, Geppetti P, Fischer A, et al. Is TRPV1 a useful target in respiratory diseases? Pulm Pharmacol Ther. 2008;21(6):833–9. https://doi.org/10.1016/j.pupt.2008.09.005.

    Article  CAS  PubMed  Google Scholar 

  • Lee LY, Gu Q. Role of TRPV1 in inflammation-induced airway hypersensitivity. Curr Opin Pharmacol. 2009;9(3):243–9. https://doi.org/10.1016/j.coph.2009.02.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee LY, Ni D, Hayes D Jr, Lin RL. TRPV1 as a cough sensor and its temperature-sensitive properties. Pulm Pharmacol Ther. 2011;24(3):280–5. https://doi.org/10.1016/j.pupt.2010.12.003.

    Article  CAS  PubMed  Google Scholar 

  • Cantero-Recasens G, Gonzalez JR, Fandos C, Duran-Tauleria E, Smit LA, Kauffmann F, et al. Loss of function of transient receptor potential vanilloid 1 (TRPV1) genetic variant is associated with lower risk of active childhood asthma. J Biol Chem. 2010;285(36):27532–5. https://doi.org/10.1074/jbc.C110.159491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CL, Li H, Xing XH, Guan HS, Zhang JH, Zhao JW. Effect of TRPV1 gene mutation on bronchial asthma in children before and after treatment. Allergy Asthma Proc. 2015;36(2):e29–36. https://doi.org/10.2500/aap.2015.36.3828.

    Article  PubMed  Google Scholar 

  • Rehman R, Bhat YA, Panda L, Mabalirajan U. TRPV1 inhibition attenuates IL-13 mediated asthma features in mice by reducing airway epithelial injury. Int Immunopharmacol. 2013;15(3):597–605. https://doi.org/10.1016/j.intimp.2013.02.010.

    Article  CAS  PubMed  Google Scholar 

  • Rogerio AP, Andrade EL, Calixto JB. C-fibers, but not the transient potential receptor vanilloid 1 (TRPV1), play a role in experimental allergic airway inflammation. Eur J Pharmacol. 2011;662(1–3):55–62. https://doi.org/10.1016/j.ejphar.2011.04.027.

    Article  CAS  PubMed  Google Scholar 

  • Yocum GT, Chen J, Choi CH, Townsend EA, Zhang Y, Xu D, et al. Role of transient receptor potential vanilloid 1 in the modulation of airway smooth muscle tone and calcium handling. Am J Physiol Lung Cell Mol Physiol. 2017;312(6):L812–L21. https://doi.org/10.1152/ajplung.00064.2017.

    Article  PubMed  Google Scholar 

  • Brooks SM. Irritant-induced chronic cough: irritant-induced TRPpathy. Lung. 2008;186(Suppl 1):S88–93. https://doi.org/10.1007/s00408-007-9068-0.

    Article  CAS  PubMed  Google Scholar 

  • Facchinetti F, Patacchini R. The rising role of TRPA1 in asthma. Open Drug Discov J. 2010;2(1):71–80.

    Article  CAS  Google Scholar 

  • • Yang H, Li S. Transient receptor potential ankyrin 1 (TRPA1) channel and neurogenic inflammation in pathogenesis of asthma. Med Sci Monit. 2016;22:2917–23. This review discusses how activation of TRPA1 expressed in C-fiber nociceptors promotes neurogenic inflammation in asthma.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bessac BF, Jordt SE. Breathtaking TRP channels: TRPA1 and TRPV1 in airway chemosensation and reflex control. Physiology (Bethesda). 2008;23:360–70. https://doi.org/10.1152/physiol.00026.2008.

    Article  CAS  Google Scholar 

  • Symanowicz PT, Gianutsos G, Morris JB. Lack of role for the vanilloid receptor in response to several inspired irritant air pollutants in the C57Bl/6J mouse. Neurosci Lett. 2004;362(2):150–3. https://doi.org/10.1016/j.neulet.2004.03.016.

    Article  CAS  PubMed  Google Scholar 

  • Hinman A, Chuang HH, Bautista DM, Julius D. TRP channel activation by reversible covalent modification. Proc Natl Acad Sci U S A. 2006;103(51):19564–8. https://doi.org/10.1073/pnas.0609598103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macpherson LJ, Dubin AE, Evans MJ, Marr F, Schultz PG, Cravatt BF, et al. Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature. 2007;445(7127):541–5. https://doi.org/10.1038/nature05544.

    Article  CAS  PubMed  Google Scholar 

  • Andersson DA, Gentry C, Moss S, Bevan S. Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J Neurosci. 2008;28(10):2485–94. https://doi.org/10.1523/JNEUROSCI.5369-07.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J, et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell. 2006;124(6):1269–82. https://doi.org/10.1016/j.cell.2006.02.023.

    Article  CAS  PubMed  Google Scholar 

  • Bessac BF, Sivula M, von Hehn CA, Escalera J, Cohn L, Jordt SE. TRPA1 is a major oxidant sensor in murine airway sensory neurons. J Clin Invest. 2008;118(5):1899–910. https://doi.org/10.1172/JCI34192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell. 2009;139(2):267–84. https://doi.org/10.1016/j.cell.2009.09.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caceres AI, Brackmann M, Elia MD, Bessac BF, del Camino D, D’Amours M, et al. A sensory neuronal ion channel essential for airway inflammation and hyperreactivity in asthma. Proc Natl Acad Sci U S A. 2009;106(22):9099–104. https://doi.org/10.1073/pnas.0900591106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Premkumar LS. Transient receptor potential channels as targets for phytochemicals. ACS Chem Neurosci. 2014;5(11):1117–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • • Wu SW, Fowler DK, Shaffer FJ, Lindberg JEM, Peters JH. Ethyl vanillin activates TRPA1. J Pharmacol Exp Ther. 2017;362(3):368–77. https://doi.org/10.1124/jpet.116.239384. This study provides evidence that ethyl vanillin, a common e-cig flavoring agent, is a potent activator of TRPA1.

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Delling M, Jun JC, Clapham DE. Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nat Neurosci. 2006;9(5):628–35. https://doi.org/10.1038/nn1692.

    Article  CAS  PubMed  Google Scholar 

  • Inoue M, Fujita T, Goto M, Kumamoto E. Presynaptic enhancement by eugenol of spontaneous excitatory transmission in rat spinal substantia gelatinosa neurons is mediated by transient receptor potential A1 channels. Neuroscience. 2012;210:403–15. https://doi.org/10.1016/j.neuroscience.2012.02.040.

    Article  CAS  PubMed  Google Scholar 

  • Chung G, Im ST, Kim YH, Jung SJ, Rhyu MR, Oh SB. Activation of transient receptor potential ankyrin 1 by eugenol. Neuroscience. 2014;261:153–60. https://doi.org/10.1016/j.neuroscience.2013.12.047.

    Article  CAS  PubMed  Google Scholar 

  • Kaimoto T, Hatakeyama Y, Takahashi K, Imagawa T, Tominaga M, Ohta T. Involvement of transient receptor potential A1 channel in algesic and analgesic actions of the organic compound limonene. Eur J Pain. 2016;20(7):1155–65. https://doi.org/10.1002/ejp.840.

    Article  CAS  PubMed  Google Scholar 

  • Silverman RA, Hasegawa K, Egan DJ, Stiffler KA, Sullivan AF, Camargo CA. Multicenter study of cigarette smoking among adults with asthma exacerbations in the emergency department, 2011–2012. Respir Med. 2017;125:89–91.

    Article  PubMed  Google Scholar 

  • Thomson NC, Chaudhuri R, Livingston E. Asthma and cigarette smoking. Eur Respir J. 2004;24(5):822–33. https://doi.org/10.1183/09031936.04.00039004.