doi.org

Osteocyte and bone structure - Current Osteoporosis Reports

  • ️Burger, Elisabeth H.
  • ️Sun Jun 01 2003
  • Kamioka H, Honjo T, Takano-Yamamoto T: A three-dimensional distribution of osteocyte processes revealed by the combination of confocal laser scanning microscopy and differential interference contrast microscopy. Bone 2001, 28:145–149.

    Article  PubMed  CAS  Google Scholar 

  • Van der Plas A, Nijweide PJ: Isolation and purification of osteocytes. J Bone Miner Res 1992, 7:389–396.

    PubMed  Google Scholar 

  • Doty SB: Morphological evidence of gap junctions between bone cells. Calcif Tissue Int 1981, 33:509–512.

    Article  PubMed  CAS  Google Scholar 

  • Cowin SC, Moss-Salentijn L, Moss ML: Candidates for the mechanosensory system in bone. J Biomed Eng 1991, 113:191–197.

    CAS  Google Scholar 

  • Mullender MG, Huiskes R: Proposal for the regulatory mechanism of Wolff’s law. J Orthop Res 1995, 13:503–512.

    Article  PubMed  CAS  Google Scholar 

  • Weinbaum S, Cowin SC, Zeng Y: A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech 1994, 27:339–360.

    Article  PubMed  CAS  Google Scholar 

  • Klein-Nulend J, Van der Plas A, Semeins CM, et al.: Sensitivity of osteocytes to biomechanical stress in vitro. FASEB J 1995, 9:441–445.

    PubMed  CAS  Google Scholar 

  • Burger EH, Klein-Nulend J: Mechanotransduction in bone: role of the lacuno-canalicular network. FASEB J 1999, 13:S101-S112. This paper emphasizes the role of osteocytes as the mechanosensory cells of bone, and the lacunocanalicular structure that mediates mechanosensing. This concept explains local bone gain and loss— as well as remodeling in response to fatigue damage—as processes supervised by mechanosensitive osteocytes.

    PubMed  CAS  Google Scholar 

  • Burger EH, Klein-Nulend J, Smit TH: Strain-derived canalicular fluid flow regulates osteoclast activity in a remodeling osteon - a proposal. J Biomech 2003, In press. This paper proposes that bone alignment during remodeling occurs as a result of different canalicular flow patterns around the cutting cone and reversal zone during loading. It explains how the resorbing osteoclasts find their way through the pre-existing bone matrix.

  • Smit TH, Burger EH: Is BMU-coupling a strain-regulated phenomenon? A finite element analysis. J Bone Miner Res 2000, 15:301–307. This paper shows that the subsequent activation of osteoclasts and osteoblasts during remodeling of bone is a strain-related phenomenon.

    Article  PubMed  CAS  Google Scholar 

  • Smit TH, Burger EH, Huyghe JM: A case for strain-induced fluid flow as a regulator of BMU-coupling and osteonal alignment. J Bone Miner Res 2002, 17:2021–2029. This paper demonstrates that cellular activity at a bone remodeling site is well related to local fluid patterns, which may explain the coordinated progression of a BMU.

    Article  PubMed  Google Scholar 

  • Nijweide PJ, Mulder RJP: Identification of osteocytes in osteoblast-like cultures using a monoclonal antibody specifically directed against osteocytes. Histochemistry 1986, 84:343–350.

    Article  Google Scholar 

  • Van der Plas A, Aarden EM, Feyen JHM, et al.: Characteristics and properties of osteocytes in culture. J Bone Miner Res 1994, 9:1697–1704.

    PubMed  Google Scholar 

  • Tanaka-Kamioka K, Kamioka H, Ris H, Lim SS: Osteocyte shape is dependent on actin filaments and osteocyte processes are unique actin-rich projections. J Bone Miner Res 1998, 13:1555–1568.

    Article  PubMed  CAS  Google Scholar 

  • Aarden EM, Wassenaar AM, Alblas MJ, Nijweide PJ: Immunocytochemical demonstration of extracellular matrix proteins in isolated osteocytes. Histochem Cell Biol 1996, 106:495–501.

    PubMed  CAS  Google Scholar 

  • Westbroek I, De Rooij KE, Nijweide PJ: Osteocyte-specific monoclonal antibody MAb OB7.3 is directed against Phex protein. J Bone Miner Res 2002, 17:845–853.

    Article  PubMed  CAS  Google Scholar 

  • Skerry TM, Bitensky L, Chayen J, Lanyon LE: Early strainrelated changes in enzyme activity in osteocytes following bone loading in vivo. J Bone Miner Res 1989, 4:783–788.

    PubMed  CAS  Google Scholar 

  • El-Haj AJ, Minter SL, Rawlinson SCF, et al.: Cellular responses to mechanical loading in vitro. J Bone Miner Res 1990, 5:923–932.

    PubMed  CAS  Google Scholar 

  • Lean JM, Jagger CJ, Chambers TJ, Chow JW: Increased insulinlike growth factor I mRNA expression in rat osteocytes in response to mechanical stimulation. Am J Physiol 1995, 268:E318-E327.

    PubMed  CAS  Google Scholar 

  • Westbroek I, Ajubi NE, Alblas MJ, et al.: Differential stimulation of Prostaglandin G/H Synthase-2 in osteocytes and other osteogenic cells by pulsating fluid flow. Biochem Biophys Res Commun 2000, 268:414–419.

    Article  PubMed  CAS  Google Scholar 

  • Westbroek I, Van der Plas A, de Rooij K, et al.: Expression of serotonin receptors in bone. J Biol Chem 2001, 276:28961–28968.

    Article  PubMed  CAS  Google Scholar 

  • Klein-Nulend J, Semeins CM, Ajubi NE, et al.: Pulsating fluid flow increases nitric oxide (NO) synthesis by osteocytes but not periosteal fibroblasts-correlation with prostaglandin upregulation. Biochem Biophys Res Commun 1995, 217:640–648.

    Article  PubMed  CAS  Google Scholar 

  • Piekarski K, Munro M: Transport mechanism operating between blood supply and osteocytes in long bones. Nature 1977, 269:80–82.

    Article  PubMed  CAS  Google Scholar 

  • Dillaman RM: Movement of ferritin in the 2-day-old chick femur. Anat Rec 1984, 209:445–453.

    Article  PubMed  CAS  Google Scholar 

  • Kufahl RH, Saha S: A theoretical model for stress-generated flow in the canaliculi-lacunae network in bone tissue. J Biomech 1990, 23:171–180.

    Article  PubMed  CAS  Google Scholar 

  • Cowin SC, Weinbaum S, Zeng Y: A case for bone canaliculi as the anatomical site of strain generated potentials. J Biomech 1995, 28:1281–1296.

    Article  PubMed  CAS  Google Scholar 

  • Wang N, Butler JP, Ingber DE: Mechanotransduction across the cell surface and through the cytoskeleton. Science 1993, 260:1124–1127.

    Article  PubMed  CAS  Google Scholar 

  • Watson PA: Function follows form: generation of intracellular signals by cell deformation. FASEB J 1991, 5:2013–2019.

    PubMed  CAS  Google Scholar 

  • Binderman I, Shimshoni Z, Somjen D: Biochemical pathways involved in the translation of physical stimulus into biological message. Calcif Tissue Int 1984, 36:S82-S85.

    Article  PubMed  Google Scholar 

  • Ajubi NE, Klein-Nulend J, Nijweide PJ, et al.: Pulsating fluid flow increases prostaglandin production by cultured chicken osteocytes - a cytoskeleton-dependent process. Biochem Biophys Res Commun 1996, 225:62–68.

    Article  PubMed  CAS  Google Scholar 

  • Klein-Nulend J, Burger EH, Semeins CM, et al.: Pulsating fluid flow stimulates prostaglandin release and prostaglandin G/H synthase mRNA expression in primary mouse bone cells. J Bone Miner Res 1997, 12:45–51.

    Article  PubMed  CAS  Google Scholar 

  • Klein-Nulend J, Sterck JGH, Semeins CM, et al.: Donor age and mechanosensitivity of human bone cells. Osteoporosis Int 2002, 13:137–146.

    Article  CAS  Google Scholar 

  • Rawlinson SCF, El-Haj AJ, Minter SLJ et al.: Loading-related increases in prostaglandin production in cores of adult canine cancellous bone in vitro: a role for prostacyclin in adaptive bone remodeling? J Bone Miner Res 1991, 6:45–1351.

    Google Scholar 

  • Thompson DD, Rodan GA: Indomethacin inhibition of tenotomy-induced bone resorption. J Bone Miner Res 1988, 3:409–414.

    Article  PubMed  CAS  Google Scholar 

  • Klein-Nulend J, Helfrich MH, Sterck JGH, et al.: EH: Nitric oxide response to shear stress by human bone cell cultures is endothelial nitric oxide synthase dependent. Biochem Biophys Res Commun 1998, 250:108–114.

    Article  PubMed  CAS  Google Scholar 

  • Pitsillides AA, Rawlinson SCF, Suswillo RFL, et al.: Mechanical strain-induced NO production by bone cells - a possible role in adaptive bone (re)modeling. FASEB J 1995, 9:1614–1622.

    PubMed  CAS  Google Scholar 

  • Sterck JGH, Klein-Nulend J, Lips P, Burger EH: Response of normal and osteoporotic human bone cells to mechanical stress in vitro. Am J Physiol 1998, 274:E1113-E1120.

    PubMed  CAS  Google Scholar 

  • Rubin CT, Lanyon LE: Regulation of bone formation by applied dynamic loads. J Bone Joint Surg 1984, 66A:397–410.

    Google Scholar 

  • Turner CH, Owan I, Takano Y, et al.: Nitric oxide plays a role in bone mechanotransduction. J Bone Miner Res 1995, 10(Suppl 1):235.

    Google Scholar 

  • Zaman G, Pitsillides AA, Rawlinson SC, et al.: Mechanical strain stimulates nitric oxide production by rapid activation of endothelial nitric oxide synthase in osteocytes. J Bone Miner Res 1999, 14:1123–1131.

    Article  PubMed  CAS  Google Scholar 

  • Busse R, Fleming I: Pulsatile stretch and shear stress: physical stimuli determining the production of endothelium derived relaxing factors. J Vasc Res 1998, 35:73–84.

    Article  PubMed  CAS  Google Scholar 

  • Rossig L, Haendeler J, Hermann C, et al.: Nitric oxide down-regulates MKP-3 mRNA levels: involvement in endothelial cell protection from apoptosis. J Biol Chem 2000, 275:2552–2557.

    Article  Google Scholar 

  • Dimmeler S, Zeiher AM: Nitric oxide and apoptosis: another paradign for the double-edged role of nitric oxide. Nitric Oxide 1997, 1:275–281.

    Article  PubMed  CAS  Google Scholar 

  • Bronckers ALJJ, Goei SW, Luo G, et al.: DNA fragmentation during bone formation in neonatal rodents assessed by transferasemediated en labeling. J Bone Miner Res 1996, 11:1281–1291.

    PubMed  CAS  Google Scholar 

  • Verborgt O, Gibson GJ, Schaffler MB: Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J Bone Miner Res 2000, 15:60–67.

    Article  PubMed  CAS  Google Scholar 

  • Noble BS, Stevens H, Loveridge N, Reeve J: Identification of apoptotic changes in osteocytes in normal and pathological human bone. Bone 1997, 20:273–282.

    Article  PubMed  CAS  Google Scholar 

  • Bronckers ALJJ, Goei W, Van Heerde WL, et al.: Phagocytosis of dying chondrocytes by osteoclasts in the mouse growth plate as demonstrated by annexin-V labeling. Cell Tissue Res 2000, 301:267–272.

    Article  PubMed  CAS  Google Scholar 

  • MacIntyre I, Zaidi M, Alam ASMT, et al.: Osteoclast inhibition: an action of nitric oxide not mediated by cyclic GMP. Proc Natl Acad Sci U S A 1991, 88:2936–2940.

    Article  PubMed  CAS  Google Scholar 

  • Huiskes R, Ruimerman R, van Lenthe GH, Janssen JD: Effects of mechanical forces on maintenance and adaptation from in trabecular bone. Nature 2000, 405:704–706.

    Article  PubMed  CAS  Google Scholar 

  • Bakker AD, Soejima K, Klein-Nulend J, Burger EH: The production of nitric oxide and prostaglandin E2 by primary mouse bone cells is shear stress dependent. J Biomech 2001, 34:671–677.

    Article  PubMed  CAS  Google Scholar