Comparative Analysis of the Antiviral Activity of Camel, Bovine, and Human Lactoperoxidases Against Herpes Simplex Virus Type 1 - Applied Biochemistry and Biotechnology
- ️Redwan, Elrashdy M.
- ️Wed Nov 16 2016
References
Morrison, M., & Allen, P. Z. (1966). Lactoperoxidase: identification and isolation from harderian and lacrimal glands. Science, 152, 1626–1628.
Morrison, M., Allen, P. Z., Bright, J., & Jayasinghe, W. (1965). Lactoperoxidase. V. Identification and isolation of lactoperoxidase from salivary gland. Archives of Biochemistry and Biophysics, 111, 126–133.
Sharma, S., Singh, A. K., Kaushik, S., Sinha, M., Singh, R. P., Sharma, P., Sirohi, H., Kaur, P., & Singh, T. P. (2013). Lactoperoxidase: structural insights into the function, ligand binding and inhibition. Int J Biochem Mol Biol, 4, 108–128.
Sisecioglu, M., Cankaya, M., Gulcin, I., & Ozdemir, H. (2010). Interactions of melatonin and serotonin with lactoperoxidase enzyme. Journal of Enzyme Inhibition and Medicinal Chemistry, 25, 779–783.
Bafort, F., Parisi, O., Perraudin, J. P., & Jijakli, M. H. (2014). Mode of action of lactoperoxidase as related to its antimicrobial activity: a review. Enzyme Res, 2014, 517164.
Bolscher, B. G., Plat, H., & Wever, R. (1984). Some properties of human eosinophil peroxidase, a comparison with other peroxidases. Biochimica et Biophysica Acta, 784, 177–186.
Harrison, J. E., & Schultz, J. (1976). Studies on the chlorinating activity of myeloperoxidase. The Journal of Biological Chemistry, 251, 1371–1374.
Langbakk, B., & Flatmark, T. (1989). Lactoperoxidase from human colostrum. The Biochemical Journal, 259, 627–631.
Langbakk, B., & Flatmark, T. (1984). Demonstration and partial purification of lactoperoxidase from human colostrum. FEBS Letters, 174, 300–303.
Wever, R., Kast, W. M., Kasinoedin, J. H., & Boelens, R. (1982). The peroxidation of thiocyanate catalysed by myeloperoxidase and lactoperoxidase. Biochimica et Biophysica Acta, 709, 212–219.
Petrides, P. E., & Nauseef, W. M. (2000). The peroxidase multigene family of enzymes: biochemical basis and clinical applications (p. 193). Berlin: Springer-Verlag, GmbH.
Furtmuller, P. G., Jantschko, W., Zederbauer, M., Jakopitsch, C., Arnhold, J., & Obinger, C. (2004). Kinetics of interconversion of redox intermediates of lactoperoxidase, eosinophil peroxidase and myeloperoxidase. Japanese Journal of Infectious Diseases, 57, S30–S31.
Chandler, J. D., & Day, B. J. (2015). Biochemical mechanisms and therapeutic potential of pseudohalide thiocyanate in human health. Free Radical Research, 49, 695–710.
Pattison, D. I., Davies, M. J., & Hawkins, C. L. (2012). Reactions and reactivity of myeloperoxidase-derived oxidants: differential biological effects of hypochlorous and hypothiocyanous acids. Free Radical Research, 46, 975–995.
Lloyd, M. M., Grima, M. A., Rayner, B. S., Hadfield, K. A., Davies, M. J., & Hawkins, C. L. (2013). Comparative reactivity of the myeloperoxidase-derived oxidants hypochlorous acid and hypothiocyanous acid with human coronary artery endothelial cells. Free Radical Biology & Medicine, 65, 1352–1362.
Rayner, B. S., Love, D. T., & Hawkins, C. L. (2014). Comparative reactivity of myeloperoxidase-derived oxidants with mammalian cells. Free Radical Biology & Medicine, 71, 240–255.
Storkey, C., Pattison, D. I., White, J. M., Schiesser, C. H., & Davies, M. J. (2012). Preventing protein oxidation with sugars: scavenging of hypohalous acids by 5-selenopyranose and 4-selenofuranose derivatives. Chemical Research in Toxicology, 25, 2589–2599.
Hawkins, C. L. (2009). The role of hypothiocyanous acid (HOSCN) in biological systems. Free Radical Research, 43, 1147–1158.
Lloyd, M. M., van Reyk, D. M., Davies, M. J., & Hawkins, C. L. (2008). Hypothiocyanous acid is a more potent inducer of apoptosis and protein thiol depletion in murine macrophage cells than hypochlorous acid or hypobromous acid. The Biochemical Journal, 414, 271–280.
Furtmuller, P. G., Zederbauer, M., Jantschko, W., Helm, J., Bogner, M., Jakopitsch, C., & Obinger, C. (2006). Active site structure and catalytic mechanisms of human peroxidases. Archives of Biochemistry and Biophysics, 445, 199–213.
Gajhede, M. (2001). Plant peroxidases: substrate complexes with mechanistic implications. Biochemical Society Transactions, 29, 91–98.
Poulos, T. L., Edwards, S. L., Wariishi, H., & Gold, M. H. (1993). Crystallographic refinement of lignin peroxidase at 2a. The Journal of Biological Chemistry, 268, 4429–4440.
Jantschko, W., Furtmuller, P. G., Allegra, M., Livrea, M. A., Jakopitsch, C., Regelsberger, G., & Obinger, C. (2002). Redox intermediates of plant and mammalian peroxidases: a comparative transient-kinetic study of their reactivity toward indole derivatives. Archives of Biochemistry and Biophysics, 398, 12–22.
Kimura, S., & Ikeda-Saito, M. (1988). Human myeloperoxidase and thyroid peroxidase, two enzymes with separate and distinct physiological functions, are evolutionarily related members of the same gene family. Proteins, 3, 113–120.
O’Brien, P. J. (2000). Peroxidases. Chemico-Biological Interactions, 129, 113–139.
Naidu, A. S. (2000). In A. S. Naidu (Ed.), Natural food antimicrobial systems (pp. 103–132). Boca Raton: CRC Press.
Pourtois, M., Binet, C., Van Tieghem, N., Courtois, P., Vandenabbeele, A., & Thiry, L. (1990). Inhibition of HIV infectivity by lactoperoxidase-produced hypothiocyanite. Journal de Biologie Buccale, 18, 251–253.
Mikola, H., Waris, M., & Tenovuo, J. (1995). Inhibition of herpes simplex virus type 1, respiratory syncytial virus and echovirus type 11 by peroxidase-generated hypothiocyanite. Antiviral Research, 26, 161–171.
Barrett, N. E., Grandison, A. S., & Lewis, M. J. (1999). Contribution of the lactoperoxidase system to the keeping quality of pasteurized milk. The Journal of Dairy Research, 66, 73–80.
Korhonen, H. (1980). A new method for preserving milk—the lactoperoxidase antibacterial system. World Anim Rev, 35, 23–29.
Wright, R. C., & Tramer, J. (1958). Factors influencing the activity of cheese starters—the role of milk peroxidase. Journal of Dairy Research, 25, 104–118.
Roizman, B., Pellett, P. E., Knipe, D. M., & Whitley, R. J. (2001). In D. M. Knipe & P. M. Howley (Eds.), Fields virology, vol. 2 (pp. 2381–2509). Hagerstown: Lippincott.
Grinde, B. (2013). Herpesviruses: latency and reactivation—viral strategies and host response. J Oral Microbiol, 5
Esmann, J. (2001). The many challenges of facial herpes simplex virus infection. The Journal of Antimicrobial Chemotherapy, 47(Suppl T1), 17–27.
Mitchell, B. M., Bloom, D. C., Cohrs, R. J., Gilden, D. H., & Kennedy, P. G. E. (2003). Herpes simplex virus-1 and varicella-zoster virus latency in ganglia. Journal of Neurovirology, 9, 194–204.
Kukhanova, M. K., Korovina, A. N., & Kochetkov, S. N. (2014). Human herpes simplex virus: life cycle and development of inhibitors. Biochemistry (Mosc), 79, 1635–1652.
Redwan, E. M., Larsen, N. L., & Wilson, I. A. (2003). Simplified procedure for elimination of co-purified contaminant proteins from human colostrums IgA1. J Egypt Ger Soc Zool, 40A, 251–260.
Arslan, O., Nalbantoglu, B., Demir, N., Ozdemir, H., & Kufrevioglu, O. I. (1996). A new method for the purification of carbonic anhydrase isozymes by affinity chromatography. Turk J Medical Scie, 26, 163–166.
Bozdag, M., Isik, S., Beyaztas, S., Arslan, O., & Supuran, C. T. (2015). Synthesis of a novel affinity gel for the purification of carbonic anhydrases. Journal of Enzyme Inhibition and Medicinal Chemistry, 30, 240–244.
Atasever, A., Ozdemir, H., Gulcin, I., & Irfan Kufrevioglu, O. (2013). One-step purification of lactoperoxidase from bovine milk by affinity chromatography. Food Chemistry, 136, 864–870.
Cuatrecasas, P. (1970). Agarose derivatives for purification of protein by affinity chromatography. Nature, 228, 1327–1328.
Cuatrecasas, P. (1970). Protein purification by affinity chromatography. Derivatizations of agarose and polyacrylamide beads. The Journal of Biological Chemistry, 245, 3059–3065.
Şisecioglu, M., Gülçin, I., Çankaya, M., & Ozdemir, H. (2012). The inhibitory effects of L-adrenaline on lactoperoxidase enzyme (LPO) purified from buffalo milk. International Journal of Food Properties, 15, 1182–1189.
Sisecioglu, M., Uguz, M. T., Cankaya, M., Ozdemir, H., & Gulcin, I. (2011). Effects of ceftazidime pentahydrate, prednisolone, amikacin sulfate, ceftriaxone sodium and teicoplanin on bovine milk lactoperoxidase activity. International Journal of Pharmacology, 7, 79–83.
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.
Chance, B., & Maehly, A. C. (1955). In S. P. Colowick & N. O. Kaplan (Eds.), Methods in enzymology (Vol. II, pp. 764–775). New York: Academic Press.
Davis, B. J. (1964). Disc electrophoresis. II. Method and application to human serum proteins. Annals of the New York Academy of Sciences, 121, 404–427.
Lineweaver, H. (1985). Citation classic—the determination of enzyme dissociation constants. Current Contents/Life Sciences, 19–19
Lineweaver, H., & Burk, D. (1934). The determination of enzyme dissociation constants. Journal of the American Chemical Society, 56, 658–666.
Mollaei, H. R., Monavari, S. H., Arabzadeh, S., Shahrabadi, M. S., & Fazlalipour, M. (2014). Antiviral activity of Sirna UL42 against herpes simplex virus type 1 in HeLa cell culture. J Antivir Antiretrovir, 6, 114–119.
Almehdar, H. A., El-Fakharany, E. M., Uversky, V. N., & Redwan, E. M. (2015). Disorder in milk proteins: structure, functional disorder, and biocidal potentials of lactoperoxidase. Current Protein & Peptide Science, 16, 352–365.
Boots, J. W., & Floris, R. (2006). Lactoperoxidase: from catalytic mechanism to practical applications. International Dairy Journal, 16, 1272–1276.
Benoy, M. J., Essy, A. K., Sreekumar, B., & Haridas, M. (2000). Thiocyanate mediated antifungal and antibacterial property of goat milk lactoperoxidase. Life Sciences, 66, 2433–2439.
Dionysius, D. A., Grieve, P. A., & Vos, A. C. (1992). Studies on the lactoperoxidase system: reaction kinetics and antibacterial activity using two methods for hydrogen peroxide generation. The Journal of Applied Bacteriology, 72, 146–153.
Soukka, T., Lumikari, M., & Tenovuo, J. (1991). Combined inhibitory effect of lactoferrin and lactoperoxidase system on the viability of Streptococcus mutans, serotype c. Scandinavian Journal of Dental Research, 99, 390–396.
Redwan, E. M., Almehdar, H. A., EL-Fakharany, E. M., Baig, A. W. K., & Uversky, V. N. (2015). Potential antiviral activities of camel, bovine, and human lactoperoxidases against hepatitis C virus genotype 4. RSC Advances, 5, 60441–60452.
Reiter, B. (1978). The lactoperoxidase-thiocyanate-hydrogen peroxide antibacterium system. Ciba Found Symp, 285–294
Seifu, E., Buys, E. M., & Donkin, E. F. (2005). Significance of the lactoperoxidase system in the dairy industry and its potential applications: a review. Trends in Food Science & Technology, 16, 137–154.
van Hooijdonk, A. C., Kussendrager, K. D., & Steijns, J. M. (2000). In vivo antimicrobial and antiviral activity of components in bovine milk and colostrum involved in non-specific defence. The British Journal of Nutrition, 84(Suppl 1), S127–S134.
Wolfson, L. M., & Sumner, S. S. (1993). Antibacterial activity of the lactoperoxidase system—a review. Journal of Food Protection, 56, 887–892.
Pruitt, K. M., & Kamau, D. N. (1991). In D. S. Robinson & N. A. M. Eskin (Eds.), Oxidative enzymes in foods (pp. 133–174). London: Elsevier Applied Sciences.
Almahdy, O., El-Fakharany, E. M., El-Dabaa, E., Ng, T. B., & Redwan, E. M. (2011). Examination of the activity of camel milk casein against hepatitis C virus (genotype-4a) and its apoptotic potential in hepatoma and HeLa cell lines. Hepatitis Monthly, 11, 724–730.
El-Fakharany, E. M., Tabll, A., El-Wahab, A. A., Haroun, B. M., & Redwan, E. M. (2008). Potential activity of camel milk-amylase and lactoferrin against hepatitis C virus infectivity in hepG2 and lymphocytes. Hepatitis Monthly, 8, 101–109.
EL-Fakharany, E. M., Abedelbaky, N., Haroun, B. M., Sanchez, L., Redwan, N. A., Redwan, E. M. (2012). Anti-infectivity of camel polyclonal antibodies against hepatitis C virus in Huh7.5 hepatoma. Virology Journal, 9
EL-Fakharany, E. M., Sanchez, L., Al-Mehdar, H. A., Redwan, E. M. (2013). Effectiveness of human, camel, bovine and sheep lactoferrin on the hepatitis C virus cellular infectivity: comparison study. Virology Journal, 10
Liao, Y., El-Fakkarany, E., Lonnerdal, B., & Redwan, E. M. (2012). Inhibitory effects of native and recombinant full-length camel lactoferrin and its N and C lobes on hepatitis C virus infection of Huh7.5 cells. Journal of Medical Microbiology, 61, 375–383.
Ng, T. B., Wong, J. H., Almahdy, O., El-Fakharany, E. M., El-Dabaa, E., & Redwan, E. M. (2012). In A. M. Ventimiglia & J. M. Birkenhäger (Eds.), Casein: production, uses and health effects. New York: Nova Science Publishers.
Redwan, E. M., & Tabll, A. (2007). Camel lactoferrin markedly inhibits hepatitis C virus genotype 4 infection of human peripheral blood leukocytes. Journal of Immunoassay & Immunochemistry, 28, 267–277.
Redwan, E. M., EL-Fakharany, E. M., Uversky, V. N., Linjawi, M. H. (2014). Screening the anti infectivity potentials of native N- and C-lobes derived from the camel lactoferrin against hepatitis C virus. Bmc Complementary and Alternative Medicine, 14
Gothefors, L., & Marklund, S. (1975). Lactoperoxidase activity in human milk and in saliva of newborn infants. Infection and Immunity, 11, 1210–1215.
Kumar, R., Bhatia, K. L., Dauter, Z., Betzel, C., & Singh, T. P. (1995). Purification, crystallization and preliminary X-ray crystallographic analysis of lactoperoxidase from buffalo milk. Acta Crystallographica. Section D, Biological Crystallography, 51, 1094–1096.
Wijkstrom-Frei, C., El-Chemaly, S., Ali-Rachedi, R., Gerson, C., Cobas, M. A., Forteza, R., Salathe, M., & Conner, G. E. (2003). Lactoperoxidase and human airway host defense. American Journal of Respiratory Cell and Molecular Biology, 29, 206–212.
Kussendrager, K. D., & van Hooijdonk, A. C. (2000). Lactoperoxidase: physico-chemical properties, occurrence, mechanism of action and applications. The British Journal of Nutrition, 84(Suppl 1), S19–S25.
Sisecioglu, M., Cankaya, M., Gulcin, I., & Ozdemir, H. (2009). The inhibitory effect of propofol on bovine lactoperoxidase. Protein and Peptide Letters, 16, 46–49.
Perraudin, J. P. (1991). Protéines à activités biologiques: lactoferrine et lactoperoxydase. Connaissances récemment acquises et technologies d’obtention. Lait, 71, 191–211.
Ramet, J. P. (2001). The technology of making cheese from camel milk (Camelus dromedarius). Rome: Food and Agriculture Organization of the United Nations (FAO).
el Agamy, E. I., Ruppanner, R., Ismail, A., Champagne, C. P., & Assaf, R. (1992). Antibacterial and antiviral activity of camel milk protective proteins. The Journal of Dairy Research, 59, 169–175.
Reiter, B., & Harnulv, G. (1984). Lactoperoxidase antibacterial system—natural occurrence, biological functions and practical applications. Journal of Food Protection, 47, 724–732.
Sisecioglu, M., Gulcin, I., Cankaya, M., Atasever, A., & Ozdemir, H. (2010). The effects of norepinephrine on lactoperoxidase enzyme (LPO). Scientific Research and Essays, 5, 1351–1356.
Nandini, K. E., & Rastogi, N. K. (2010). Single step purification of lactoperoxidase from whey involving reverse micelles-assisted extraction and its comparison with reverse micellar extraction. Biotechnology Progress, 26, 763–771.
Nandini, K. E., & Rastogi, N. K. (2011). Integrated downstream processing of lactoperoxidase from milk whey involving aqueous two-phase extraction and ultrasound-assisted ultrafiltration. Applied Biochemistry and Biotechnology, 163, 173–185.
Jooyandeh, H., Aberoumand, A., & Nasehi, B. (2011). Application of lactoperoxidase system in fish and food products: a review. J Agric Environ Sci, 10, 89–96.
Gingerich, A., Pang, L., Hanson, J., Dlugolenski, D., Streich, R., Lafontaine, E. R., Nagy, T., Tripp, R. A., & Rada, B. (2016). Hypothiocyanite produced by human and rat respiratory epithelial cells inactivates extracellular H1N2 influenza a virus. Inflammation Research, 65, 71–80.
Antoine, T. E., Park, P. J., & Shukla, D. (2013). Glycoprotein targeted therapeutics: a new era of anti-herpes simplex virus-1 therapeutics. Reviews in Medical Virology, 23, 194–208.
Blann, A., Knight, G., Moore, G. (2010). Hematology. ed. Oxford Press, Oxford
Van Antwerpen, P., Boudjeltia, K. Z., Babar, S., Legssyer, I., Moreau, P., Moguilevsky, N., Vanhaeverbeek, M., Ducobu, J., & Neve, J. (2005). Thiol-containing molecules interact with the myeloperoxidase/H2O2/chloride system to inhibit LDL oxidation. Biochemical and Biophysical Research Communications, 337, 82–88.
Huemer, H. P., Menzel, H. J., Potratz, D., Brake, B., Falke, D., Utermann, G., & Dierich, M. P. (1988). Herpes-simplex virus binds to human-serum lipoprotein. Intervirology, 29, 68–76.
Sakamaki, K., Ueda, T., & Nagata, S. (2002). The evolutionary conservation of the mammalian peroxidase genes. Cytogenetic and Genome Research, 98, 93–95.
Burner, U., Jantschko, W., & Obinger, C. (1999). Kinetics of oxidation of aliphatic and aromatic thiols by myeloperoxidase compounds I and II. FEBS Letters, 443, 290–296.
Fischer, A. J., Lennemann, N. J., Krishnamurthy, S., Pocza, P., Durairaj, L., Launspach, J. L., Rhein, B. A., Wohlford-Lenane, C., Lorentzen, D., Banfi, B., & McCray, P. B. (2011). Enhancement of respiratory mucosal antiviral defenses by the oxidation of iodide. American Journal of Respiratory Cell and Molecular Biology, 45, 874–881.
Derscheid, R. J., van Geelen, A., Berkebile, A. R., Gallup, J. M., Hostetter, S. J., Banfi, B., McCray, P. B., & Ackermann, M. R. (2014). Increased concentration of iodide in airway secretions is associated with reduced respiratory syncytial virus disease severity. American Journal of Respiratory Cell and Molecular Biology, 50, 389–397.
Speth, C., Brodde, M. F., Hagleitner, M., Rambach, G., Van Aken, H., Dierich, M., Kehrel, B. E. (2013). Neutrophils turn plasma proteins into weapons against HIV-1. Plos One, 8
Cegolon, L., Salata, C., Piccoli, E., Juarez, V., Palu, G., Mastrangelo, G., & Calistri, A. (2013). In vitro antiviral activity of hypothiocyanite against a/H1N1/2009 pandemic influenza virus. International Journal of Hygiene and Environmental Health, 217, 17–22.
Klebanoff, S. J. (1967). Iodination of bacteria: a bactericidal mechanism. The Journal of Experimental Medicine, 126, 1063–1078.
Morrison, M., & Bayse, G. S. (1970). Catalysis of iodination by lactoperoxidase. Biochemistry, 9, 2995–3000.
Nagy, P., Jameson, G. N., & Winterbourn, C. C. (2009). Kinetics and mechanisms of the reaction of hypothiocyanous acid with 5-thio-2-nitrobenzoic acid and reduced glutathione. Chemical Research in Toxicology, 22, 1833–1840.
Chandler, J. D., & Day, B. J. (2012). Thiocyanate: a potentially useful therapeutic agent with host defense and antioxidant properties. Biochemical Pharmacology, 84, 1381–1387.
Hawkins, C. L., & Davies, M. J. (2002). Hypochlorite-induced damage to DNA, RNA, and polynucleotides: formation of chloramines and nitrogen-centered radicals. Chemical Research in Toxicology, 15, 83–92.