link.springer.com

Selenium Suppresses Lipopolysaccharide-Induced Fibrosis in Peritoneal Mesothelial Cells Through Inhibition of Epithelial-to-Mesenchymal Transition - Biological Trace Element Research

  • ️Wu, Chunling
  • ️Sun Aug 10 2014
  • Zuo L, Wang M, Chinese Association of Blood Purification Management of Chinese Hospital Association (2010) Current burden and probable increasing incidence of ESRD in China. Clin Nephrol 74(Suppl 1):S20–S22

    PubMed  Google Scholar 

  • Modi GK, Jha V (2006) The incidence of end-stage renal disease in India: a population-based study. Kidney Int 70(12):2131–2133

    PubMed  CAS  Google Scholar 

  • Yang X, Yi C, Liu X et al (2013) Clinical outcome and risk factors for mortality in Chinese patients with diabetes on peritoneal dialysis: a 5-year clinical cohort study. Diabetes Res Clin Pract 100(3):354–361

    Article  PubMed  Google Scholar 

  • Mehrotra R, Chiu YW, Kalantar-Zadeh K et al (2011) Similar outcomes with hemodialysis and peritoneal dialysis in patients with end-stage renal disease. Arch Intern Med 171(2):110–118

    Article  PubMed  Google Scholar 

  • Yeates K, Zhu N, Vonesh E et al (2012) Hemodialysis and peritoneal dialysis are associated with similar outcomes for end-stage renal disease treatment in Canada. Nephrol Dial Transplant 27(9):3568–3575

    Article  PubMed  Google Scholar 

  • Ueno T, Nakashima A, Doi S et al (2013) Mesenchymal stem cells ameliorate experimental peritoneal fibrosis by suppressing inflammation and inhibiting TGF-β1 signaling. Kidney Int 84(2):297–307

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kitamoto M, Kato K, Sugimoto A et al (2011) Sairei-to ameliorates rat peritoneal fibrosis partly through suppression of oxidative stress. Nephron Exp Nephrol 117(3):e71–e81

    Article  PubMed  CAS  Google Scholar 

  • de Lima SM, Otoni A, Sabino Ade P et al (2013) Inflammation, neoangiogenesis and fibrosis in peritoneal dialysis. Clin Chim Acta 421:46–50

    Article  PubMed  Google Scholar 

  • Margetts PJ, Kolb M, Yu L et al (2001) A chronic inflammatory infusion model of peritoneal dialysis in rats. Perit Dial Int 21:S368–S372

    PubMed  Google Scholar 

  • Borges FR, Silva MD, Córdova MM et al (2014) Anti-inflammatory action of hydroalcoholic extract, dichloromethane fraction and steroid α-spinasterol from Polygala sabulosa in LPS-induced peritonitis in mice. J Ethnopharmacol 151(1):144–150

    Article  PubMed  CAS  Google Scholar 

  • Liu ZW, Zhu HT, Chen KL et al (2013) Selenium attenuates high glucose-induced ROS/TLR-4 involved apoptosis of rat cardiomyocyte. Biol Trace Elem Res 156(1–3):262–270

    Article  PubMed  CAS  Google Scholar 

  • Yang SY, Zhang L, Miao KK et al (2013) Effects of selenium intervention on chronic fluorosis-induced renal cell apoptosis in rats. Biol Trace Elem Res 153(1–3):237–242

    Article  PubMed  CAS  Google Scholar 

  • Cases J, Vacchina V, Napolitano A et al (2001) Selenium from selenium-rich Spirulina is less bioavailable than selenium from sodium selenite and selenomethionine in selenium-deficient rats. J Nutr 131(9):2343–2350

    PubMed  CAS  Google Scholar 

  • Babaknejad N, Sayehmiri F, Sayehmiri K et al (2014) The relationship between selenium levels and breast cancer: a systematic review and meta-analysis. Biol Trace Elem Res 159(1–3):1–7

    Article  PubMed  CAS  Google Scholar 

  • Tarp U, Overvad K, Hansen JC et al (1985) Low selenium level in severe rheumatoid arthritis. Scand J Rheumatol 14(2):97–101

    Article  PubMed  CAS  Google Scholar 

  • Loscalzo J (2014) Keshan disease, selenium deficiency, and the selenoproteome. N Engl J Med 370(18):1756–1760

    Article  PubMed  CAS  Google Scholar 

  • Nazıroğlu M, Yıldız K, Tamtürk B et al (2012) Selenium and psoriasis. Biol Trace Elem Res 150(1–3):3–9

    PubMed  Google Scholar 

  • Senol N, Nazıroğlu M, Yürüker V (2014) N-Acetylcysteine and selenium modulate oxidative stress, antioxidant vitamin and cytokine values in traumatic brain injury-induced rats. Neurochem Res 39(4):685–692

    Article  PubMed  CAS  Google Scholar 

  • Nazıroğlu M, Karaoğlu A, Orhan Aksoy A (2004) Selenium and high dose vitamin E administration protects cisplatin-induced oxidative damage to renal, liver and lens tissues in rats. Toxicology 195:221–230

    Article  PubMed  Google Scholar 

  • Ding M, Potter JJ, Liu X et al (2010) Selenium supplementation decreases hepatic fibrosis in mice after chronic carbon tetrachloride administration. Biol Trace Elem Res 133(1):83–97

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhu X, Guo K, Lu Y (2011) Selenium effectively inhibits 1,2-dihydroxynaphthalene-induced apoptosis in human lens epithelial cells through activation of PI3-K/Akt pathway. Mol Vis 17:2019–2027

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yu H, Huang J, Wang S et al (2013) Overexpression of Smad7 suppressed ROS/MMP9-dependent collagen synthesis through regulation of heme oxygenase-1. Mol Biol Rep 40(9):5307–5314

    Article  PubMed  CAS  Google Scholar 

  • Tobar N, Villar V, Santibanez JF (2010) ROS-NFkappaB mediates TGF-beta1-induced expression of urokinase-type plasminogen activator, matrix metalloproteinase-9 and cell invasion. Mol Cell Biochem 340(1–2):195–202

    Article  PubMed  CAS  Google Scholar 

  • Boca M, D’Amato L, Distefano G et al (2007) Polycystin-1 induces cell migration by regulating phosphatidylinositol 3-kinase-dependent cytoskeletal rearrangements and GSK3beta-dependent cell cell mechanical adhesion. Mol Biol Cell 18:4050–4061

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tiwari N, Gheldof A, Tatari M et al (2012) EMT as the ultimate survival mechanism of cancer cells. Semin Cancer Biol 22(3):194–207

    Article  PubMed  CAS  Google Scholar 

  • Aroeira LS, Aguilera A, Sánchez-Tomero JA et al (2007) Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventions. J Am Soc Nephrol 18(7):2004–2013

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q, Yang M, Lan H et al (2013) miR-30a negatively regulates TGF-β1-induced epithelial-mesenchymal transition and peritoneal fibrosis by targeting Snai1. Am J Pathol 183(3):808–819

    Article  PubMed  CAS  Google Scholar 

  • Yokoi H, Kasahara M, Mori K et al (2012) Pleiotrophin triggers inflammation and increased peritoneal permeability leading to peritoneal fibrosis. Kidney Int 81(2):160–169

    Article  PubMed  CAS  Google Scholar 

  • Gangji AS, Brimble KS, Margetts PJ (2009) Association between markers of inflammation, fibrosis and hypervolemia in peritoneal dialysis patients. Blood Purif 28(4):354–358

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Yang R, Cheng L et al (2011) LPS-induced epithelial-mesenchymal transition of intrahepatic biliary epithelial cells. J Surg Res 171(2):819–825

    Article  PubMed  CAS  Google Scholar 

  • Lee HB, Ha H (2007) Mechanisms of epithelial-mesenchymal transition of peritoneal mesothelial cells during peritoneal dialysis. J Korean Med Sci 22(6):943–945

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yu MA, Shin KS, Kim JH et al (2009) HGF and BMP-7 ameliorate high glucose-induced epithelial-to-mesenchymal transition of peritoneal mesothelium. J Am Soc Nephrol 20(3):567–581

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Copeland JW, Beaumont BW, Merrilees MJ et al (2007) Epithelial-to-mesenchymal transition of human proximal tubular epithelial cells: effects of rapamycin, mycophenolate, cyclosporin, azathioprine, and methylprednisolone. Transplantation 83(6):809–814

    Article  PubMed  CAS  Google Scholar 

  • Fusshoeller A (2008) Histomorphological and functional changes of the peritoneal membrane during long-term peritoneal dialysis. Pediatr Nephrol 23(1):19–25

    Article  PubMed  Google Scholar 

  • Duan SB, Liu GL, Wang YH et al (2012) Epithelial-to-mesenchymal transdifferentiation of renal tubular epithelial cell mediated by oxidative stress and intervention effect of probucol in diabetic nephropathy rats. Ren Fail 34(10):1244–1251

    Article  PubMed  CAS  Google Scholar 

  • Baker RD, Baker SS, LaRosa K et al (1993) Selenium regulation of glutathione peroxidase in human hepatoma cell line Hep3B. Arch Biochem Biophys 304(1):53–57

    Article  PubMed  CAS  Google Scholar 

  • Lothrop AP, Snider GW, Ruggles EL et al (2014) Why is mammalian thioredoxin reductase 1 so dependent upon the use of selenium? Biochemistry 53(3):554–565

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Saito Y, Yoshida Y, Akazawa T et al (2003) Cell death caused by selenium deficiency and protective effect of antioxidants. J Biol Chem 278(41):39428–39434

    Article  PubMed  CAS  Google Scholar 

  • Uğuz AC, Nazıroğlu M (2012) Effects of selenium on calcium signaling and apoptosis in rat dorsal root ganglion neurons induced by oxidative stress. Neurochem Res 37(8):1631–1638

    Article  PubMed  Google Scholar 

  • Uğuz AC, Naziroğlu M, Espino J et al (2009) Selenium modulates oxidative stress-induced cell apoptosis in human myeloid HL-60 cells through regulation of calcium release and caspase-3 and -9 activities. J Membr Biol 232(1–3):15–23

    PubMed  Google Scholar 

  • Vunta H, Davis F, Palempalli UD et al (2007) The anti-inflammatory effects of selenium are mediated through 15-deoxy-Delta12,14-prostaglandin J2 in macrophages. J Biol Chem 282(25):17964–17973

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Zhang R, Wang T et al (2014) Selenium inhibits LPS-induced pro-inflammatory gene expression by modulating MAPK and NF-κB signaling pathways in mouse mammary epithelial cells in primary culture. Inflammation 37(2):478–485

    Article  PubMed  CAS  Google Scholar 

  • Zeng R, Yao Y, Han M et al (2008) Biliverdin reductase mediates hypoxia-induced EMT via PI3-kinase and Akt. J Am Soc Nephrol 19:380–387

    Article  PubMed  CAS  PubMed Central  Google Scholar