link.springer.com

Roles of TRAF6 in CD40 signaling - Immunologic Research

  • ️Hostager, Bruce S.
  • ️Fri Jun 01 2007
  • Aggarwal BB. Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 2003;3:745–56

    Article  PubMed  CAS  Google Scholar 

  • Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 2001;104:487–501

    Article  PubMed  CAS  Google Scholar 

  • Foy TM, Aruffo A, Bajorath J, Buhlmann JE, Noelle RJ. Immune regulation by CD40 and its ligand GP39. Ann Rev Immunol 1996;14:591–617

    Article  CAS  Google Scholar 

  • Stout RD, Suttles J. The many roles of CD40 in cell-mediated inflammatory responses. Immunol Today 1996;17:487–92

    Article  PubMed  CAS  Google Scholar 

  • Schoenberger SP, Toes REM, van der Voort EIH, Melief CJM. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 1998;393:480–3

    Article  PubMed  CAS  Google Scholar 

  • Bennett SRM, Carbone FR, Karamalis F, Flavell RA, Miller JFAP, Heath WR. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 1998;393:478–80

    Article  PubMed  CAS  Google Scholar 

  • Kirk AD, Burkly LC, Batty DS, Baumgartner RE, Berning JD, Buchanan K, Fechner JH, Germond RL, Kampen RL, Patterson NB, Swanson SJ, Tadaki DK, TenHoor CN, White L, Knechtle SJ, Harlan DM. Treatment with humanized monoclonal antibody against CD154 prevents acute renal allograft rejection in nonhuman primates. Nature Med 1999;5:686–93

    Article  PubMed  CAS  Google Scholar 

  • Balasa B, Drahl T, Patstone G, Lee J, Tisch R, McDevitt HO, Sarventnick N. CD40 ligand-CD40 interactions are necessary for the initiation of insuliteis and diabetes in nonobese diabetic mice. J Immunol 1997;159:4620–7

    PubMed  CAS  Google Scholar 

  • Durie FH, Fava RA, Foy TM, Aruffo AA, Ledbetter JA, Noelle RJ. Prevention of collagen-induced arthritis with an antibody to gp39, the ligand for CD40. Science 1993;261:1328–30

    Article  PubMed  CAS  Google Scholar 

  • Couzin J. Drug discovery: magnificent obsession. Science 2005;307:1712–5

    Article  PubMed  CAS  Google Scholar 

  • Reimold AM. New indications for treatment of chronic inflammation by TNF-alpha blockade. Am J Med Sci 2003;325:75–92

    Article  PubMed  Google Scholar 

  • Feldmann M, Maini RN. Anti-TNF alpha therapy of rheumatoid arthritis: what have we learned? Annu Rev Immunol 2001;19:163–96

    Article  PubMed  CAS  Google Scholar 

  • Werneburg BG, Zoog SJ, Dang TT, Kehry MR, Crute JJ. Molecular characterization of CD40 signaling intermediates. J Biol Chem 2001;276:43334–42

    Article  PubMed  CAS  Google Scholar 

  • Jabara HH, Buckley RH, Roberts JL, Lefranc G, Loiselet J, Khalil G, Geha RS. Role of JAK3 in CD40-mediated signaling. Blood 1998;92:2435–40

    PubMed  CAS  Google Scholar 

  • Pype S, Declercq W, Ibrahimi A, Michiels C, Van Rietschoten JG, Dewulf N, de Boer M, Vandenabeele P, Huylebroeck D, Remacle JE. TTRAP, a novel protein that associates with CD40, tumor necrosis factor (TNF) receptor-75 and TNF receptor-associated factors (TRAFs), and that inhibits nuclear factor-kappa B activation. J Biol Chem 2000;275:18586–93

    Article  PubMed  CAS  Google Scholar 

  • Wajant H, Henkler F, Scheurich P. The TNF-receptor-associated factor family: scaffold molecules for cytokine receptors, kinases and their regulators. Cell Signal 2001;13:389–400

    Article  PubMed  CAS  Google Scholar 

  • Rothe M, Wong SC, Henzel WJ, Goeddel DV. A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell 1994;78:681–92

    Article  PubMed  CAS  Google Scholar 

  • Chung JY, Park YC, Ye H, Wu H. All TRAFs are not created equal: common and distinct molecular mechanisms of TRAF-mediated signal transduction. J Cell Sci 2002;115:679–88

    PubMed  CAS  Google Scholar 

  • Bishop GA. The multifaceted roles of TRAFs in the regulation of B-cell function. Nat Rev Immunol 2004;4:775–86

    Article  PubMed  CAS  Google Scholar 

  • Pullen SS, Miller HG, Everdeen DS, Dang TTA, Crute JJ, Kehry MR. CD40-tumor necrosis factor receptor-associated factor (TRAF) interactions: regulation of CD40 signaling through multiple TRAF binding sites and TRAF hetero-oligomerization. Biochem 1998;37:11836–45

    Article  CAS  Google Scholar 

  • Rothe M, Sarma V, Dixit VW, Goeddel DV. TRAF2-mediated activation of NF-kB by TNF receptor 2 and CD40. Science 1995;269:1424–7

    Article  PubMed  CAS  Google Scholar 

  • Hostager BS, Catlett IM, Bishop GA. Recruitment of CD40, TRAF2 and TRAF3 to membrane microdomains during CD40 signaling. J Biol Chem 2000;275:15392–98

    Article  PubMed  CAS  Google Scholar 

  • Arron JR, Pewzner-Jung Y, Walsh MC, Kobayashi T, Choi Y. Regulation of the subcellular localization of tumor necrosis factor receptor-associated factor (TRAF)2 by TRAF1 reveals mechanisms of TRAF2 signaling. J Exp Med 2002;196:923–34

    Article  PubMed  CAS  Google Scholar 

  • Vidalain PO, Azocar O, Servet-Delprat C, Rabourdin-Combe C, Gerlier D, Manie S. CD40 signaling in human dendritic cells is initiated within membrane rafts. EMBO J 2000;19:3304–13

    Article  PubMed  CAS  Google Scholar 

  • Legler DF, Micheau O, Doucey MA, Tschopp J, Bron C. Recruitment of TNF receptor 1 to lipid rafts is essential for TNFalpha-mediated NF-kappaB activation. Immunity 2003;18:655–64

    Article  PubMed  CAS  Google Scholar 

  • Chan FK, Lenardo MJ. A crucial role for p80 TNF-R2 in amplifying p60 TNF-R1 apoptosis signals in T lymphocytes. Eur J Immunol 2000;30:652–60

    Article  PubMed  CAS  Google Scholar 

  • Duckett CS, Thompson CB. CD30-dependent degradation of TRAF2: implications for negative regulation of TRAF signaling and the control of cell survival. Genes Dev 1997;11:2810–21

    PubMed  CAS  Google Scholar 

  • Brown KD, Hostager BS, Bishop GA. Differential signaling and tumor necrosis factor receptor-associated factor (TRAF) degradation mediated by CD40 and the Epstein-Barr virus oncoprotein latent membrane protein 1 (LMP1). J Exp Med 2001;193:943–54

    Article  PubMed  CAS  Google Scholar 

  • Brown KD, Hostager BS, Bishop GA. Regulation of TRAF2 signaling by self-induced degradation. J Biol Chem 2002;277:19433–8

    Article  PubMed  CAS  Google Scholar 

  • Shi C-S, Kehrl JH. TNF-induced GCKR and SAPK activation depends upon the E2/E3 complex Ubc13-Uev1A/TRAF2. J Biol Chem 2003;278:15429–34

    Article  PubMed  CAS  Google Scholar 

  • Xie P, Hostager BS, Munroe ME, Moore CR, Bishop GA. Cooperation between TNF Receptor-associated factors 1 and 2 in CD40 signaling. J Immunol 2006;176:5388–400

    PubMed  CAS  Google Scholar 

  • Hostager BS, Haxhinasto SA, Rowland SL, Bishop GA. TRAF2-deficient B lymphocytes reveal novel roles for TRAF2 in CD40 signaling. J Biol Chem 2003;278:45382–90

    Article  PubMed  CAS  Google Scholar 

  • Nguyen LT, Duncan GS, Mirtsos C, Ng M, Speiser DE, Shahinian A, Marino MW, Mak TW, Ohashi PS, Yey W-C. TRAF2 deficiency results in hyperactivity of certain TNFR1 signals and impairment of CD40-mediated responses. Immunity 1999;11:379–89

    Article  PubMed  CAS  Google Scholar 

  • Grech AP, Amesbury M, Chan T, Gardam S, Basten A, Brink R. TRAF2 differentially regulates the canonical and noncanonical pathways of NF-kappaB activation in mature B cells. Immunity 2004;21:629–42

    Article  PubMed  CAS  Google Scholar 

  • Nakano H, Sakon S, Koseki H, Takemori T, Tada K, Matsumoto M, Munechika E, Sakai T, Shirasawa T, Akiba H, Kobata T, Santee SM, Ware CF, Rennert PD, Taniguchi M, Yagita H, Okumura K. Targeted disruption of TRAF5 gene causes defects in CD40- and CD27-mediated lymphocyte activation. Proc Natl Acad Sci U S A 1999;96:9803–8

    Article  PubMed  CAS  Google Scholar 

  • Bishop GA, Xie P. Multiple roles of TRAF3 signaling in lymphocyte function. Immunol Res 2007; in press

  • Pullen SS, Dang TT, Crute JJ, Kehry MR. CD40 signaling through tumor necrosis factor receptor-associated factors (TRAFs). Binding site specificity and activation of downstream pathways by distinct TRAFs. J Biol Chem 1999;274:14246–54

    Article  PubMed  CAS  Google Scholar 

  • Ye H, Arron JR, Lamothe B, Cirilli M, Kobayashi T, Shevde NK, Segal D, Dzivenu OK, Vologodskaia M, Yim M, Du K, Singh S, Pike JW, Darnay BG, Choi Y, Wu H. Distinct molecular mechanism for initiating TRAF6 signalling. Nature 2002;418:443–7

    Article  PubMed  CAS  Google Scholar 

  • McWhirter SM, Pullen SS, Holton JM, Crute JJ, Kehry MR, Alber T. Crystallographic analysis of CD40 recognition and signaling by human TRAF2. Proc Natl Acad Sci U S A 1999;96:8408–13

    Article  PubMed  CAS  Google Scholar 

  • Ni CZ, Welsh K, Leo E, Chiou CK, Wu H, Reed JC, Ely KR. Molecular basis for CD40 signaling mediated by TRAF3. Proc Natl Acad Sci U S A 2000;97:10395–99

    Article  PubMed  CAS  Google Scholar 

  • Ye H, Wu H. Thermodynamic characterization of the interaction between TRAF2 and tumor necrosis factor receptor peptides by isothermal titration calorimetry. Proc Natl Acad Sci U S A 2000;97:8961–6

    Article  PubMed  CAS  Google Scholar 

  • Baccam M, Bishop GA. Membrane-bound CD154, but not CD40-specific antibody, mediates NF-kB-independent IL-6 production in B cells. Eur J Immunol 1999;29:3855–66

    Article  PubMed  CAS  Google Scholar 

  • Mukundan L, Bishop GA, Head KZ, Zhang L, Wahl LM, Suttles J. TNF receptor-associated factor 6 is an essential mediator of CD40-activated proinflammatory pathways in monocytes and macrophages. J Immunol 2005;174:1081–90

    PubMed  CAS  Google Scholar 

  • Ahonen C, Manning E, Erickson LD, O’Connor B, Lind EF, Pullen SS, Kehry MR, Noelle RJ. The CD40-TRAF6 axis controls affinity maturation and the generation of long-lived plasma cells. Nat Immunol 2002;3:451–6

    Article  PubMed  CAS  Google Scholar 

  • Jabara H, Laouini D, Tsitsikov E, Mizoguchi E, Bhan A, Castigli E, Dedeoglu F, Pivniouk V, Brodeur S, Geha R. The binding site for TRAF2 and TRAF3 but not for TRAF6 is essential for CD40-mediated immunoglobulin class switching. Immunity 2002;17:265

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Walsh PT, Walsh MC, Speirs KM, Chiffoleau E, King CG, Hancock WW, Caamano JH, Hunter CA, Scott P, Turka LA, Choi Y. TRAF6 is a critical factor for dendritic cell maturation and development. Immunity 2003;19:353–63

    Article  PubMed  CAS  Google Scholar 

  • Naito A, Azuma S, Tanaka S, Miyazaki T, Takaki S, Takatsu K, Nakao K, Nakamura K, Katsuki M, Yamamoto T, Inoue J. Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells 1999;4:353–62

    Article  PubMed  CAS  Google Scholar 

  • Lomaga MA, Yeh WC, Sarosi I, Duncan GS, Furlonger C, Ho A, Morony S, Capparelli C, Van G, Kaufman S, van der Heiden A, Itie A, Wakeham A, Khoo W, Sasaki T, Cao ZD, Penninger JM, Paige CJ, Lacey DL, Dunstan CR, Boyle WJ, Goeddel DV, Mak TW. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev 1999;13:1015–24

    Google Scholar 

  • Davies CC, Mak TW, Young LS, Eliopoulos AG. TRAF6 is required for TRAF2-dependent CD40 signal transduction in nonhemopoietic cells. Mol Cell Biol 2005;25:9806–19

    Article  PubMed  CAS  Google Scholar 

  • Benson RJ, Hostager BS, Bishop GA. Rapid CD40-mediated rescue from CD95-induced apoptosis requires TNFR-associated factor-6 and PI3K. Eur J Immunol 2006;36:2535–43

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Walsh MC, Choi Y. The role of TRAF6 in signal transduction and the immune response. Microbes Infect 2004;6:1333–8

    Article  PubMed  CAS  Google Scholar 

  • Chen ZJ, Bhoj V, Seth RB. Ubiquitin TAK1 and IKK: is there a connection? Cell Death Differ 2006;13:687–92

    Article  PubMed  CAS  Google Scholar 

  • Kornitzer D, Ciechanover A. Modes of regulation of ubiquitin-mediated protein degradation. J Cell Physiol 2000;182:1–11

    Article  PubMed  CAS  Google Scholar 

  • Hicke L. Gettin’ down with ubiquitin: turning off cell-surface receptors, transporters and channels. Trends Cell Biol 1999;9:107–12

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 2001;412:346–51

    Article  PubMed  CAS  Google Scholar 

  • Deng L, Wang C, Spencer E, Yang L, Braun A, You J, Slaughter C, Pickart C, Chen ZJ. Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 2000;103:351–61

    Article  PubMed  CAS  Google Scholar 

  • Liu YC, Penninger J, Karin M. Immunity by ubiquitylation: a reversible process of modification. Nat Rev Immunol 2005;5:941–52

    Article  PubMed  CAS  Google Scholar 

  • Freemont PS. Ubiquitination: RING for destruction? Current Biology 2000;10:R84–7

    Article  PubMed  CAS  Google Scholar 

  • Jalukar SV, Hostager BS, Bishop GA. Characterization of the roles of TNF receptor-associated factor 6 (TRAF6) in CD40-mediated B Lymphocyte Effector Functions. J Immunol 2000;164:623–30

    PubMed  CAS  Google Scholar 

  • Huang Q, Yang J, Lin Y, Walker C, Cheng J, Liu ZG, Su B. Differential regulation of interleukin 1 receptor and Toll-like receptor signaling by MEKK3. Nat Immunol 2004;5:98–103

    Article  PubMed  CAS  Google Scholar 

  • Arron JR, Vologodskaia M, Wong BR, Naramura M, Kim N, Gu H, Choi Y. A positive regulatory role for Cbl family proteins in tumor necrosis factor-related activation-induced cytokine (TRANCE) and CD40L-mediated Akt activation. J Biol Chem 2001;276:30011–7

    Article  PubMed  CAS  Google Scholar 

  • Wong BR, Besser D, Kim N, Arron JR, Vologodskaia M, Hanafusa H, Choi Y. TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Mol Cell 1999;4:1041–9

    Article  PubMed  CAS  Google Scholar 

  • King CG, Kobayashi T, Cejas PJ, Kim T, Yoon K, Kim GK, Chiffoleau E, Hickman SP, Walsh PT, Turka LA, Choi Y. TRAF6 is a T cell-intrinsic negative regulator required for the maintenance of immune homeostasis. Nat Med 2006;12:1088–92

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi N, Kadono Y, Naito A, Matsumoto K, Yamamoto T, Tanaka S, Inoue J-I Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis. EMBO J 2001;20:1271–80

    Article  PubMed  CAS  Google Scholar 

  • Lamothe B, Besse A, Campos AD, Webster WK, Wu H, and Darnay BG. Site-specific K63-linked TRAF6 auto-ubiquitination is a critical determinantof IKK activation. J Biol Chem 2007;282:4102–12

    Article  PubMed  CAS  Google Scholar