A superadditive property of Hadamard’s gamma function - Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
- ️Alzer, Horst
- ️Thu Jan 08 2009
Abstract
Hadamard’s gamma function is defined by
$$H(x)=\frac{1}{\Gamma(1-x)}\frac{d}{dx}\log \frac{\Gamma(1/2-x/2)}{\Gamma(1-x/2)},$$
where Γ denotes the classical gamma function of Euler. H is an entire function, which satisfies H(n)=(n−1)! for all positive integers n. We prove the following superadditive property.
Let α be a real number. The inequality
holds for all real numbers x,y with x,y≥α if and only if α≥α 0=1.5031…. Here, α 0 is the only solution of H(2t)=2H(t) in [1.5,∞).
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price excludes VAT (USA)
Tax calculation will be finalised during checkout.
Instant access to the full article PDF.
Similar content being viewed by others
References
Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York (1965)
Alzer, H.: On some inequalities for the gamma and psi functions. Math. Comput. 66, 373–389 (1997)
Alzer, H.: A power mean inequality for the gamma function. Monatsh. Math. 131, 179–188 (2000)
Alzer, H.: Mean-value inequalities for the polygamma functions. Aequ. Math. 61, 151–161 (2001)
Alzer, H., Ruscheweyh, S.: A subadditive property of the gamma function. J. Math. Anal. Appl. 285, 564–577 (2003)
Davis, P.J.: Leonhard Euler’s integral: a historical profile of the gamma function. Am. Math. Mon. 66, 849–869 (1959)
Gautschi, W.: The incomplete gamma function since Tricomi. In: Tricomi’s Ideas and Contemporary Applied Mathematics, Atti Convegni Lincei, vol. 147, pp. 203–237. Accad. Naz. Lincei, Rome (1998)
Luschny, P.: Is the gamma function misdefined? Or: Hadamard versus Euler—who found the better gamma function? http://www.luschny.de/math/factorial/hadamard/HadamardsGammaFunction.html
Mijajlović, Ž., Malešević, B.: Differentially transcendental functions. arXiv:math.GM/0412354 v3, 9 Feb 2006
Newton, T.A.: Derivation of a factorial function by method of analogy. Am. Math. Mon. 68, 917–920 (1961)
Sándor, J.: A bibliography on gamma functions: inequalities and applications. http://www.math.ubbcluj.ro/~jsandor/letolt/art42.pdf
Author information
Authors and Affiliations
Morsbacher Str. 10, 51545, Waldbröl, Germany
Horst Alzer
Corresponding author
Correspondence to Horst Alzer.
Additional information
Communicated by O. Riemenschneider.