link.springer.com

Teriflunomide and Its Mechanism of Action in Multiple Sclerosis - Drugs

  • ️Wiendl, Heinz
  • ️Thu Apr 17 2014
  • Hauser SL, Oksenberg JR. The neurobiology of multiple sclerosis: genes, inflammation, and neurodegeneration. Neuron. 2006;52:61–76.

    CAS  PubMed  Google Scholar 

  • Trapp BD, Nave KA. Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci. 2008;31:247–69.

    CAS  PubMed  Google Scholar 

  • Sospedra M, Martin R. Immunology of multiple sclerosis. Annu Rev Immunol. 2005;23:683–747.

    CAS  PubMed  Google Scholar 

  • McFarland HF, Martin R. Multiple sclerosis: a complicated picture of autoimmunity. Nat Immunol. 2007;8:913–9.

    CAS  PubMed  Google Scholar 

  • Hafler DA. Multiple sclerosis. J Clin Invest. 2004;113:788–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liblau RS, Gonzalez-Dunia D, Wiendl H, et al. Neurons as targets for T cells in the nervous system. Trends Neurosci. 2013.

  • Dutta R, Trapp BD. Mechanisms of neuronal dysfunction and degeneration in multiple sclerosis. Prog Neurobiol. 2011;93:1–12.

    PubMed Central  PubMed  Google Scholar 

  • Lucchinetti CF, Popescu BF, Bunyan RF, et al. Inflammatory cortical demyelination in early multiple sclerosis. N Engl J Med. 2011;365:2188–97.

    CAS  PubMed Central  PubMed  Google Scholar 

  • O’Connor P, Wolinsky JS, Confavreux C, et al. Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N Engl J Med. 2011;365:1293–303.

    PubMed  Google Scholar 

  • Confavreux C, O’Connor P, Comi G, et al. Oral teriflunomide for patients with relapsing multiple sclerosis (TOWER): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol. 2014;13:247–56.

    CAS  PubMed  Google Scholar 

  • Frischer JM, Bramow S, Dal-Bianco A, et al. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain. 2009;132:1175–89.

    PubMed Central  PubMed  Google Scholar 

  • Christensen JR, Bornsen L, Ratzer R, et al. Systemic inflammation in progressive multiple sclerosis involves follicular T-helper, th17- and activated B-cells and correlates with progression. PLoS One. 2013;8:e57820.

    CAS  PubMed Central  Google Scholar 

  • Melzer N, Meuth SG, Wiendl H. CD8+ T cells and neuronal damage: direct and collateral mechanisms of cytotoxicity and impaired electrical excitability. FASEB J. 2009;23:3659–73.

    CAS  PubMed  Google Scholar 

  • Kerlero de Rosbo N, Milo R, Lees MB, et al. Reactivity to myelin antigens in multiple sclerosis. Peripheral blood lymphocytes respond predominantly to myelin oligodendrocyte glycoprotein. J Clin Invest. 1993;92:2602–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ransohoff RM, Kivisakk P, Kidd G. Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol. 2003;3:569–81.

    CAS  PubMed  Google Scholar 

  • Galea I, Bernardes-Silva M, Forse PA, et al. An antigen-specific pathway for CD8 T cells across the blood–brain barrier. J Exp Med. 2007;204:2023–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Archambault AS, Sim J, Gimenez MA, et al. Defining antigen-dependent stages of T cell migration from the blood to the central nervous system parenchyma. Eur J Immunol. 2005;35:1076–85.

    CAS  PubMed  Google Scholar 

  • Reboldi A, Coisne C, Baumjohann D, et al. C–C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol. 2009;10:514–23.

    CAS  PubMed  Google Scholar 

  • Arima Y, Harada M, Kamimura D, et al. Regional neural activation defines a gateway for autoreactive T cells to cross the blood–brain barrier. Cell. 2012;148:447–57.

    CAS  PubMed  Google Scholar 

  • Hohlfeld R, Wekerle H. Autoimmune concepts of multiple sclerosis as a basis for selective immunotherapy: from pipe dreams to (therapeutic) pipelines. Proc Natl Acad Sci USA. 2004;101(Suppl 2):14599–606.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hohlfeld R. Multiple sclerosis: human model for EAE? Eur J Immunol. 2009;39:2036–9.

    CAS  PubMed  Google Scholar 

  • Ben-Nun A, Wekerle H, Cohen IR. The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating autoimmune encephalomyelitis. Eur J Immunol. 1981;11:195–9.

    CAS  PubMed  Google Scholar 

  • Beecham AH, Patsopoulos NA, Xifara DK, et al. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat Genet. 2013;45:1353–60.

    CAS  PubMed  Google Scholar 

  • Panitch HS, Hirsch RL, Haley AS, et al. Exacerbations of multiple sclerosis in patients treated with gamma interferon. Lancet. 1987;1:893–5.

    CAS  PubMed  Google Scholar 

  • Gutcher I, Becher B. APC-derived cytokines and T cell polarization in autoimmune inflammation. J Clin Invest. 2007;117:1119–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kebir H, Kreymborg K, Ifergan I, et al. Human TH17 lymphocytes promote blood–brain barrier disruption and central nervous system inflammation. Nat Med. 2007;13:1173–5.

    CAS  PubMed  Google Scholar 

  • McKenzie BS, Kastelein RA, Cua DJ. Understanding the IL-23–IL-17 immune pathway. Trends Immunol. 2006;27:17–23.

    CAS  PubMed  Google Scholar 

  • Tzartos JS, Friese MA, Craner MJ, et al. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am J Pathol. 2008;172:146–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Darlington PJ, Touil T, Doucet JS, et al. Diminished Th17 (not Th1) responses underlie multiple sclerosis disease abrogation after hematopoietic stem cell transplantation. Ann Neurol. 2013;73:341–54.

    CAS  PubMed  Google Scholar 

  • Friese MA, Fugger L. Pathogenic CD8(+) T cells in multiple sclerosis. Ann Neurol. 2009;66:132–41.

    CAS  PubMed  Google Scholar 

  • Brisebois M, Zehntner SP, Estrada J, et al. A pathogenic role for CD8+ T cells in a spontaneous model of demyelinating disease. J Immunol. 2006;177:2403–11.

    CAS  PubMed  Google Scholar 

  • Traugott U, Reinherz EL, Raine CS. Multiple sclerosis: distribution of T cell subsets within active chronic lesions. Science. 1983;219:308–10.

    CAS  PubMed  Google Scholar 

  • Crawford MP, Yan SX, Ortega SB, et al. High prevalence of autoreactive, neuroantigen-specific CD8+ T cells in multiple sclerosis revealed by novel flow cytometric assay. Blood. 2004;103:4222–31.

    CAS  PubMed  Google Scholar 

  • Zozulya AL, Wiendl H. The role of CD8 suppressors versus destructors in autoimmune central nervous system inflammation. Hum Immunol. 2008;69:797–804.

    CAS  PubMed  Google Scholar 

  • Zozulya AL, Wiendl H. The role of regulatory T cells in multiple sclerosis. Nat Clin Pract Neurol. 2008;4:384–98.

    CAS  PubMed  Google Scholar 

  • Bjerg L, Brosbol-Ravnborg A, Torring C, et al. Altered frequency of T regulatory cells is associated with disability status in relapsing–remitting multiple sclerosis patients. J Neuroimmunol. 2012;249:76–82.

    CAS  PubMed  Google Scholar 

  • Colombo M, Dono M, Gazzola P, et al. Accumulation of clonally related B lymphocytes in the cerebrospinal fluid of multiple sclerosis patients. J Immunol. 2000;164:2782–9.

    CAS  PubMed  Google Scholar 

  • Krumbholz M, Derfuss T, Hohlfeld R, et al. B cells and antibodies in multiple sclerosis pathogenesis and therapy. Nat Rev Neurol. 2012;8:613–23.

    CAS  PubMed  Google Scholar 

  • von Budingen HC, Bar-Or A, Zamvil SS. B cells in multiple sclerosis: connecting the dots. Curr Opin Immunol. 2011;23:713–20.

    Google Scholar 

  • Serafini B, Rosicarelli B, Magliozzi R, et al. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol. 2004;14:164–74.

    PubMed  Google Scholar 

  • Lovato L, Willis SN, Rodig SJ, et al. Related B cell clones populate the meninges and parenchyma of patients with multiple sclerosis. Brain. 2011;134:534–41.

    PubMed Central  PubMed  Google Scholar 

  • von Budingen HC, Kuo TC, Sirota M, et al. B cell exchange across the blood–brain barrier in multiple sclerosis. J Clin Invest. 2012;122:4533–43.

    Google Scholar 

  • Duddy M, Niino M, Adatia F, et al. Distinct effector cytokine profiles of memory and naive human B cell subsets and implication in multiple sclerosis. J Immunol. 2007;178:6092–9.

    CAS  PubMed  Google Scholar 

  • Bar-Or A, Fawaz L, Fan B, et al. Abnormal B-cell cytokine responses a trigger of T-cell-mediated disease in MS? Ann Neurol. 2010;67:452–61.

    CAS  PubMed  Google Scholar 

  • Barr TA, Shen P, Brown S, et al. B cell depletion therapy ameliorates autoimmune disease through ablation of IL-6-producing B cells. J Exp Med. 2012;209:1001–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ray A, Mann MK, Basu S, et al. A case for regulatory B cells in controlling the severity of autoimmune-mediated inflammation in experimental autoimmune encephalomyelitis and multiple sclerosis. J Neuroimmunol. 2011;230:1–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Iwata Y, Matsushita T, Horikawa M, et al. Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood. 2011;117:530–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kalampokis I, Yoshizaki A, Tedder TF. IL-10-producing regulatory B cells (B10 cells) in autoimmune disease. Arthritis Res Ther. 2013;15(Suppl 1):S1.

    PubMed Central  PubMed  Google Scholar 

  • Correale J, Farez M, Razzitte G. Helminth infections associated with multiple sclerosis induce regulatory B cells. Ann Neurol. 2008;64:187–99.

    PubMed  Google Scholar 

  • Nuyts A, Lee W, Bashir-Dar R, et al. Dendritic cells in multiple sclerosis: key players in the immunopathogenesis, key players for new cellular immunotherapies? Mult Scler. 2013.

  • Chanvillard C, Jacolik RF, Infante-Duarte C, et al. The role of natural killer cells in multiple sclerosis and their therapeutic implications. Front Immunol. 2013;4:63.

    PubMed Central  PubMed  Google Scholar 

  • Brosnan CF, Raine CS. The astrocyte in multiple sclerosis revisited. Glia. 2013;61:453–65.

    PubMed  Google Scholar 

  • Friese MA, Fugger L. T cells and microglia as drivers of multiple sclerosis pathology. Brain. 2007;130:2755–7.

    PubMed  Google Scholar 

  • Alberts B, Johnson A, Lewis J, et al. Molecular biology of the cell. 4th ed. New York: Garland Science; 2002.

    Google Scholar 

  • Bruneau JM, Yea CM, Spinella-Jaegle S, et al. Purification of human dihydro-orotate dehydrogenase and its inhibition by A77 1726, the active metabolite of leflunomide. Biochem J. 1998;336(Pt 2):299–303.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cherwinski HM, Cohn RG, Cheung P, et al. The immunosuppressant leflunomide inhibits lymphocyte proliferation by inhibiting pyrimidine biosynthesis. J Pharmacol Exp Ther. 1995;275:1043–9.

    CAS  PubMed  Google Scholar 

  • Ruckemann K, Fairbanks LD, Carrey EA, et al. Leflunomide inhibits pyrimidine de novo synthesis in mitogen-stimulated T-lymphocytes from healthy humans. J Biol Chem. 1998;273:21682–91.

    CAS  PubMed  Google Scholar 

  • Loffler M, Klein A, Hayek-Ouassini M, et al. Dihydroorotate dehydrogenase mRNA and protein expression analysis in normal and drug-resistant cells. Nucleosides Nucleotides Nucleic Acids. 2004;23:1281–5.

    CAS  PubMed  Google Scholar 

  • Gold R, Wolinsky JS. Pathophysiology of multiple sclerosis and the place of teriflunomide. Acta Neurol Scand. 2011;124:75–84.

    CAS  PubMed  Google Scholar 

  • Jameson SC. Maintaining the norm: T-cell homeostasis. Nat Rev Immunol. 2002;2:547–56.

    CAS  PubMed  Google Scholar 

  • Fairbanks LD, Bofill M, Ruckemann K, et al. Importance of ribonucleotide availability to proliferating T-lymphocytes from healthy humans. Disproportionate expansion of pyrimidine pools and contrasting effects of de novo synthesis inhibitors. J Biol Chem. 1995;270:29682–9.

    CAS  PubMed  Google Scholar 

  • Pearce EL. Metabolism in T cell activation and differentiation. Curr Opin Immunol. 2010;22:314–20.

    CAS  PubMed  Google Scholar 

  • Davenport L, Czich A, Turpault S. Teriflunomide: no effects on sperm DNA: ECTRIMS poster 1171. Mult Scler J. 2013;19:559–73.

    Google Scholar 

  • Li L, Liu J, Delohery T, et al. The effects of teriflunomide on lymphocyte subpopulations in human peripheral blood mononuclear cells. J Neuroimmunol. 2013;265:82–90.

    CAS  PubMed  Google Scholar 

  • Ringshausen I, Oelsner M, Bogner C, et al. The immunomodulatory drug leflunomide inhibits cell cycle progression of B-CLL cells. Leukemia. 2008;22:635–8.

    CAS  PubMed  Google Scholar 

  • Cherwinski HM, McCarley D, Schatzman R, et al. The immunosuppressant leflunomide inhibits lymphocyte progression through cell cycle by a novel mechanism. J Pharmacol Exp Ther. 1995;272:460–8.

    CAS  PubMed  Google Scholar 

  • Siemasko KF, Chong AS, Williams JW, et al. Regulation of B cell function by the immunosuppressive agent leflunomide. Transplantation. 1996;61:635–42.

    CAS  PubMed  Google Scholar 

  • Rosenblatt J, Gu Y, Morgan DO. Human cyclin-dependent kinase 2 is activated during the S and G2 phases of the cell cycle and associates with cyclin A. Proc Natl Acad Sci USA. 1992;89:2824–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Quemeneur L, Gerland LM, Flacher M, et al. Differential control of cell cycle, proliferation, and survival of primary T lymphocytes by purine and pyrimidine nucleotides. J Immunol. 2003;170:4986–95.

    CAS  PubMed  Google Scholar 

  • Posevitz V, Chudyka D, Kurth F, et al. Teriflunomide suppresses antigen induced T-cell expansion in a TCR avidity dependent fashion (P1107). Mult Scler J. 2012;18(S4):509–20.

    Google Scholar 

  • Starr TK, Jameson SC, Hogquist KA. Positive and negative selection of T cells. Annu Rev Immunol. 2003;21:139–76.

    CAS  PubMed  Google Scholar 

  • Bielekova B, Sung MH, Kadom N, et al. Expansion and functional relevance of high-avidity myelin-specific CD4+ T cells in multiple sclerosis. J Immunol. 2004;172:3893–904.

    CAS  PubMed  Google Scholar 

  • Zeyda M, Poglitsch M, Geyeregger R, et al. Disruption of the interaction of T cells with antigen-presenting cells by the active leflunomide metabolite teriflunomide: involvement of impaired integrin activation and immunologic synapse formation. Arthritis Rheum. 2005;52:2730–9.

    CAS  PubMed  Google Scholar 

  • Fuentealba RA, Marasa J, Diamond MI, et al. An aggregation sensing reporter identifies leflunomide and teriflunomide as polyglutamine aggregate inhibitors. Hum Mol Genet. 2012;21:664–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Korn T, Magnus T, Toyka K, et al. Modulation of effector cell functions in experimental autoimmune encephalomyelitis by leflunomide-mechanisms independent of pyrimidine depletion. J Leukoc Biol. 2004;76:950–60.

    CAS  PubMed  Google Scholar 

  • Dimitrova P, Skapenko A, Herrmann ML, et al. Restriction of de novo pyrimidine biosynthesis inhibits Th1 cell activation and promotes Th2 cell differentiation. J Immunol. 2002;169:3392–9.

    CAS  PubMed  Google Scholar 

  • Li L, Liu J, Zhang D, et al. Teriflunomide treatment of human monocyte-derived dendritic cells in vitro does not impair their maturation or ability to induce allogeneic T-cell responses|ECTRIMS 2012. Mult Scler J. 2012;18:279–508 (P950).

    Google Scholar 

  • Claussen MC, Korn T. Immune mechanisms of new therapeutic strategies in MS: teriflunomide. Clin Immunol. 2012;142:49–56.

    CAS  PubMed  Google Scholar 

  • Lorentzen JC, Issazadeh S, Storch M, et al. Protracted, relapsing and demyelinating experimental autoimmune encephalomyelitis in DA rats immunized with syngeneic spinal cord and incomplete Freund’s adjuvant. J Neuroimmunol. 1995;63:193–205.

    CAS  PubMed  Google Scholar 

  • Merrill JE, Hanak S, Pu SF, et al. Teriflunomide reduces behavioral, electrophysiological, and histopathological deficits in the Dark Agouti rat model of experimental autoimmune encephalomyelitis. J Neurol. 2009;256:89–103.

    CAS  PubMed  Google Scholar 

  • Ringheim G, Lee L, Laws-Ricker L, et al. Teriflunomide attenuates immunopathological changes in the Dark Agouti rat model of experimental autoimmune encephalomyelitis. Front Mult Scler Neuroimmunol. 2013;4:169.

    Google Scholar 

  • Kraan MC, Reece RJ, Barg EC, et al. Modulation of inflammation and metalloproteinase expression in synovial tissue by leflunomide and methotrexate in patients with active rheumatoid arthritis. Findings in a prospective, randomized, double-blind, parallel-design clinical trial in thirty-nine patients at two centers. Arthritis Rheum. 2000;43:1820–30.

    CAS  PubMed  Google Scholar 

  • Petty M, Lee L, Ying X. Teriflunomide treatment reduces infiltration of macrophages, T cells and B cells, and increases survival of oligodendrocytes in the spinal cord of the Dark Agouti rat model of Experimental Allergic Encephalomyelitis. AAN 2010, 10–17 April 2010, Toronto, Canada, 2010.

  • Iglesias-Bregna D, Hanak S, Ji Z, et al. Effects of prophylactic and therapeutic teriflunomide in transcranial magnetic stimulation-induced motor-evoked potentials in the Dark Agouti rat model of experimental autoimmune encephalomyelitis. J Pharmacol Exp Ther. 2013;347:203–11.

    CAS  PubMed  Google Scholar 

  • Tsunoda I, Fujinami RS. Neuropathogenesis of Theiler’s murine encephalomyelitis virus infection, an animal model for multiple sclerosis. J Neuroimmune Pharmacol. 2010;5:355–69.

    PubMed Central  PubMed  Google Scholar 

  • Pachner A, Li L. Teriflunomide ameliorates disability progression in the Theiler’s virus-induced demyelinating disease model of MS [P05.196]|AAN 2013. Neurology. 2013:P05.196.

  • Pachner A, Li L. Effect of teriflunomide on the viral load and anti-viral antibody responses in the Theiler’s virus model of MS [P02.143]|AAN 2012. Neurology. 2012:P02.143.

  • O’Connor PW, Li D, Freedman MS, et al. A Phase II study of the safety and efficacy of teriflunomide in multiple sclerosis with relapses. Neurology. 2006;66:894–900.

    PubMed  Google Scholar 

  • Singer B, Comi G, Miller A, et al. Frequency of infections during treatment with teriflunomide: pooled data from three placebo-controlled teriflunomide studies|AAN 2013. Neurology. 2013.

  • Freedman M, Wolinsky JS, Comi G, et al. Long-term safety and efficacy of teriflunomide in patients with relapsing forms of multiple sclerosis in the TEMSO extension trial. ECTRIMS 2013 Poster 544. Mult Scler J. 2013;19:74–558.

    Google Scholar 

  • Confavreux C, Li DK, Freedman MS, et al. Long-term follow-up of a phase 2 study of oral teriflunomide in relapsing multiple sclerosis: safety and efficacy results up to 8.5 years. Mult Scler. 2012;18:1278–89.

    PubMed Central  PubMed  Google Scholar 

  • Bar-Or A, Freedman MS, Kremenchutzky M, et al. Teriflunomide effect on immune response to influenza vaccine in patients with multiple sclerosis. Neurology. 2013;81:552–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  • (CPMP) Cfpmp. Note for guidance on harmonisation of requirements for influenza vaccines. In: Unit HME (ed) The European Agency for the Evaluation of Medicinal Products, 1997.

  • Bar-Or A, Larouche R, Legrand B, et al. Immune response to neoantigen and recall antigens in healthy subjects receiving teriflunomide. ECTRIMS Poster 622. Mult Scler J. 2013;19:74–558.

    Google Scholar 

  • Ali R, Nicholas RS, Muraro PA. Drugs in development for relapsing multiple sclerosis. Drugs. 2013;73:625–50.

    CAS  PubMed  Google Scholar 

  • Leist T, Freedman M, Kappos L, et al. Pooled safety data from three placebo-controlled teriflunomide studies: ECTRIMS 2013 Poster 633. Mult Scler J. 2013;19:74–558.

    Google Scholar 

  • Garnock-Jones KP. Teriflunomide: a review of its use in relapsing multiple sclerosis. CNS Drugs. 2013;27:1103–23.

    CAS  PubMed  Google Scholar 

  • Trueb RM. Chemotherapy-induced alopecia. Semin Cutan Med Surg. 2009;28:11–4.

    CAS  PubMed  Google Scholar 

  • LLC s-aUS. ARAVA prescribing information. Bridgewater: Sanofi-Aventis U.S. LLC; 2012.

  • Strand V, Cohen S, Schiff M, et al. Treatment of active rheumatoid arthritis with leflunomide compared with placebo and methotrexate. Leflunomide Rheumatoid Arthritis Investigators Group. Arch Intern Med. 1999;159:2542–50.

    CAS  PubMed  Google Scholar 

  • Genzyme. AUBAGIO US prescribing information. Cambridge: Genzyme Corporation, a sanofi company; 2012.

  • Sanofi-Aventis. AUBAGIO summary of product characteristics. France: Sanofi-Aventis; 2013.

  • Chambers CD, Johnson DL, Robinson LK, et al. Birth outcomes in women who have taken leflunomide during pregnancy. Arthritis Rheum. 2010;62:1494–503.

    PubMed Central  PubMed  Google Scholar 

  • Cassina M, Johnson DL, Robinson LK, et al. Pregnancy outcome in women exposed to leflunomide before or during pregnancy. Arthritis Rheum. 2012;64:2085–94.

    CAS  PubMed  Google Scholar 

  • Kieseier B, Benamor M, Truffinet P. Pregnancy outcomes from the teriflunomide clinical development programme: PACTRIMS 2013 Poster 79. In: 6th Congress of the Pan-Asian Committee for Treatment and Research in Multiple Sclerosis (PACTRIMS); 6–8 November 2013, Kyoto, Japan.

  • Chan A, Weilbach FX, Toyka KV, et al. Mitoxantrone induces cell death in peripheral blood leucocytes of multiple sclerosis patients. Clin Exp Immunol. 2005;139:152–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tiede I, Fritz G, Strand S, et al. CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4+ T lymphocytes. J Clin Invest. 2003;111:1133–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matloubian M, Lo CG, Cinamon G, et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature. 2004;427:355–60.

    CAS  PubMed  Google Scholar 

  • Bauer M, Brakebusch C, Coisne C, et al. Beta1 integrins differentially control extravasation of inflammatory cell subsets into the CNS during autoimmunity. Proc Natl Acad Sci USA. 2009;106:1920–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gan Y, Liu R, Wu W, et al. Antibody to alpha4 integrin suppresses natural killer cells infiltration in central nervous system in experimental autoimmune encephalomyelitis. J Neuroimmunol. 2012;247:9–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wolinsky JS, Narayana PA, Nelson F, et al. Magnetic resonance imaging outcomes from a phase III trial of teriflunomide. Mult Scler. 2013.

  • Genzyme. Alemtuzumab FDA highlights of prescribing information, 2007.

  • Ontaneda D, Cohen JA. The benefits and risks of alemtuzumab in multiple sclerosis. Expert Rev Clin Immunol. 2013;9:189–91.

    CAS  PubMed  Google Scholar 

  • Wiendl H, Kieseier B. Multiple sclerosis: reprogramming the immune repertoire with alemtuzumab in MS. Nat Rev Neurol. 2013;9:125–6.

    CAS  PubMed  Google Scholar 

  • Biogen_Idec. FDA Approved Labeling Text for Tecfidera (dimethyl fumarate). 2013.

  • Scannevin RH, Chollate S, Jung MY, et al. Fumarates promote cytoprotection of central nervous system cells against oxidative stress via the nuclear factor (erythroid-derived 2)-like 2 pathway. J Pharmacol Exp Ther. 2012;341:274–84.

    CAS  PubMed  Google Scholar 

  • Moharregh-Khiabani D, Blank A, Skripuletz T, et al. Effects of fumaric acids on cuprizone induced central nervous system de- and remyelination in the mouse. PLoS One. 2010;5:e11769.

    PubMed Central  PubMed  Google Scholar 

  • Treumer F, Zhu K, Glaser R, et al. Dimethylfumarate is a potent inducer of apoptosis in human T cells. J Invest Dermatol. 2003;121:1383–8.

    CAS  PubMed  Google Scholar 

  • de Jong R, Bezemer AC, Zomerdijk TP, et al. Selective stimulation of T helper 2 cytokine responses by the anti-psoriasis agent monomethylfumarate. Eur J Immunol. 1996;26:2067–74.

    PubMed  Google Scholar 

  • Peng H, Guerau-de-Arellano M, Mehta VB, et al. Dimethyl fumarate inhibits dendritic cell maturation via nuclear factor kappaB (NF-kappaB) and extracellular signal-regulated kinase 1 and 2 (ERK1/2) and mitogen stress-activated kinase 1 (MSK1) signaling. J Biol Chem. 2012;287:28017–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vandermeeren M, Janssens S, Borgers M, et al. Dimethylfumarate is an inhibitor of cytokine-induced E-selectin, VCAM-1, and ICAM-1 expression in human endothelial cells. Biochem Biophys Res Commun. 1997;234:19–23.

    CAS  PubMed  Google Scholar 

  • Schilling S, Goelz S, Linker R, et al. Fumaric acid esters are effective in chronic experimental autoimmune encephalomyelitis and suppress macrophage infiltration. Clin Exp Immunol. 2006;145:101–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Novartis. Gilenya (Fingolimod) summary of product characteristics updated 12/04/2013. 2013.

  • Mandala S, Hajdu R, Bergstrom J, et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science. 2002;296:346–9.

    CAS  PubMed  Google Scholar 

  • Coelho RP, Payne SG, Bittman R, et al. The immunomodulator FTY720 has a direct cytoprotective effect in oligodendrocyte progenitors. J Pharmacol Exp Ther. 2007;323:626–35.

    CAS  PubMed  Google Scholar 

  • Miron VE, Ludwin SK, Darlington PJ, et al. Fingolimod (FTY720) enhances remyelination following demyelination of organotypic cerebellar slices. Am J Pathol. 2010;176:2682–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kohne A, Stettner M, Jangouk P, et al. Fingolimod impedes Schwann cell-mediated myelination: implications for the treatment of immune neuropathies? Arch Neurol. 2012;69:1280–9.

    PubMed  Google Scholar 

  • Mullershausen F, Craveiro LM, Shin Y, et al. Phosphorylated FTY720 promotes astrocyte migration through sphingosine-1-phosphate receptors. J Neurochem. 2007;102:1151–61.

    CAS  PubMed  Google Scholar 

  • Xie JH, Nomura N, Koprak SL, et al. Sphingosine-1-phosphate receptor agonism impairs the efficiency of the local immune response by altering trafficking of naive and antigen-activated CD4+ T cells. J Immunol. 2003;170:3662–70.

    CAS  PubMed  Google Scholar 

  • TEVA_Pharmaceuticals. Copaxone (Galtiramer Acetate) full prescribing information, 2009.

  • Boster A, Bartoszek MP, O’Connell C, et al. Efficacy, safety, and cost-effectiveness of glatiramer acetate in the treatment of relapsing–remitting multiple sclerosis. Ther Adv Neurol Disord. 2011;4:319–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aharoni R, Teitelbaum D, Sela M, et al. Bystander suppression of experimental autoimmune encephalomyelitis by T cell lines and clones of the Th2 type induced by copolymer 1. J Neuroimmunol. 1998;91:135–46.

    CAS  PubMed  Google Scholar 

  • Fridkis-Hareli M, Teitelbaum D, Pecht I, et al. Binding of copolymer 1 and myelin basic protein leads to clustering of class II MHC molecules on antigen-presenting cells. Int Immunol. 1997;9:925–34.

    CAS  PubMed  Google Scholar 

  • Vieira PL, Heystek HC, Wormmeester J, et al. Glatiramer acetate (copolymer-1, copaxone) promotes Th2 cell development and increased IL-10 production through modulation of dendritic cells. J Immunol. 2003;170:4483–8.

    CAS  PubMed  Google Scholar 

  • Aharoni R, Teitelbaum D, Leitner O, et al. Specific Th2 cells accumulate in the central nervous system of mice protected against experimental autoimmune encephalomyelitis by copolymer 1. Proc Natl Acad Sci USA. 2000;97:11472–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Teitelbaum D, Milo R, Arnon R, et al. Synthetic copolymer 1 inhibits human T-cell lines specific for myelin basic protein. Proc Natl Acad Sci USA. 1992;89:137–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Skihar V, Silva C, Chojnacki A, et al. Promoting oligodendrogenesis and myelin repair using the multiple sclerosis medication glatiramer acetate. Proc Natl Acad Sci USA. 2009;106:17992–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Novartis. Interferon beta (Extavia) summary of product characteristics updated 16/04/2013, 2013.

  • Bayer. Interferon beta (Betaferon) summary of product characteristics updated 05/02/2013, 2013.

  • Idec B. Interferon beta (Avonex) summary of product characteristics updated 07/02/2013, 2013.

  • Bongioanni P, Lombardo F, Moscato G, et al. T-cell interferon gamma receptor binding in interferon beta-1b-treated patients with multiple sclerosis. Arch Neurol. 1999;56:217–22.

    CAS  PubMed  Google Scholar 

  • Noronha A, Toscas A, Jensen MA. Interferon beta augments suppressor cell function in multiple sclerosis. Ann Neurol. 1990;27:207–10.

    CAS  PubMed  Google Scholar 

  • Arnason BG. Interferon beta in multiple sclerosis. Clin Immunol Immunopathol. 1996;81:1–11.

    CAS  PubMed  Google Scholar 

  • Vosoughi R, Freedman MS. Therapy of MS. Clin Neurol Neurosurg. 2010;112:365–85.

    PubMed  Google Scholar 

  • Ozenci V, Kouwenhoven M, Huang YM, et al. Multiple sclerosis is associated with an imbalance between tumour necrosis factor-alpha (TNF-alpha)- and IL-10-secreting blood cells that is corrected by interferon-beta (IFN-beta) treatment. Clin Exp Immunol. 2000;120:147–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shapiro S, Galboiz Y, Lahat N, et al. The ‘immunological-synapse’ at its APC side in relapsing and secondary-progressive multiple sclerosis: modulation by interferon-beta. J Neuroimmunol. 2003;144:116–24.

    CAS  PubMed  Google Scholar 

  • Yushchenko M, Mader M, Elitok E, et al. Interferon-beta-1 b decreased matrix metalloproteinase-9 serum levels in primary progressive multiple sclerosis. J Neurol. 2003;250:1224–8.

    CAS  PubMed  Google Scholar 

  • EMD_Serono. Novotrone (mitoxantrone for injection concentrate) FDA-approved label, 2010.

  • Koeller J, Eble M. Mitoxantrone: a novel anthracycline derivative. Clin Pharm. 1988;7:574–81.

    CAS  PubMed  Google Scholar 

  • Burns SA, Lee Archer R, Chavis JA, et al. Mitoxantrone repression of astrocyte activation: relevance to multiple sclerosis. Brain Res. 2012;1473:236–41.

    Google Scholar 

  • Fidler JM, DeJoy SQ, Gibbons JJ Jr. Selective immunomodulation by the antineoplastic agent mitoxantrone. I. Suppression of B lymphocyte function. J Immunol. 1986;137:727–32.

    CAS  PubMed  Google Scholar 

  • Biogen_Idec. Natalizumab (Tysabri) FDA-approved label, 2004.

  • Millonig A, Hegen H, Di Pauli F, et al. Natalizumab treatment reduces endothelial activity in MS patients. J Neuroimmunol. 2010;227:190–4.

    CAS  PubMed  Google Scholar 

  • Benkert TF, Dietz L, Hartmann EM, et al. Natalizumab exerts direct signaling capacity and supports a pro-inflammatory phenotype in some patients with multiple sclerosis. PLoS One. 2012;7:e52208.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bornsen L, Christensen JR, Ratzer R, et al. Effect of natalizumab on circulating CD4+ T-cells in multiple sclerosis. PLoS One. 2012;7:e47578.

    PubMed Central  PubMed  Google Scholar 

  • de Andres C, Teijeiro R, Alonso B, et al. Long-term decrease in VLA-4 expression and functional impairment of dendritic cells during natalizumab therapy in patients with multiple sclerosis. PLoS One. 2012;7:e34103.

    PubMed Central  PubMed  Google Scholar 

  • Sanofi. Aubagio EMA summary of product characteristics, 2013.

  • Martin JF, Perry JS, Jakhete NR, et al. An IL-2 paradox: blocking CD25 on T cells induces IL-2-driven activation of CD56(bright) NK cells. J Immunol. 2010;185:1311–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martin R. Anti-CD25 (daclizumab) monoclonal antibody therapy in relapsing–remitting multiple sclerosis. Clin Immunol. 2012;142:9–14.

    CAS  PubMed  Google Scholar 

  • Perry JS, Han S, Xu Q, et al. Inhibition of LTi cell development by CD25 blockade is associated with decreased intrathecal inflammation in multiple sclerosis. Sci Transl Med. 2012;4:145ra06.

    Google Scholar 

  • Wuest SC, Edwan JH, Martin JF, et al. A role for interleukin-2 trans-presentation in dendritic cell-mediated T cell activation in humans, as revealed by daclizumab therapy. Nat Med. 2011;17:604–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aharoni R, Saada R, Eilam R, et al. Oral treatment with laquinimod augments regulatory T-cells and brain-derived neurotrophic factor expression and reduces injury in the CNS of mice with experimental autoimmune encephalomyelitis. J Neuroimmunol. 2012;251:14–24.

    CAS  PubMed  Google Scholar 

  • Wegner C, Stadelmann C, Pfortner R, et al. Laquinimod interferes with migratory capacity of T cells and reduces IL-17 levels, inflammatory demyelination and acute axonal damage in mice with experimental autoimmune encephalomyelitis. J Neuroimmunol. 2010;227:133–43.

    CAS  PubMed  Google Scholar 

  • Toubi E, Nussbaum S, Staun-Ram E, et al. Laquinimod modulates B cells and their regulatory effects on T cells in multiple sclerosis. J Neuroimmunol. 2012;251:45–54.

    CAS  PubMed  Google Scholar 

  • Schulze-Topphoff U, Shetty A, Varrin-Doyer M, et al. Laquinimod, a quinoline-3-carboxamide, induces type II myeloid cells that modulate central nervous system autoimmunity. PLoS One. 2012;7:e33797.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zou LP, Abbas N, Volkmann I, et al. Suppression of experimental autoimmune neuritis by ABR-215062 is associated with altered Th1/Th2 balance and inhibited migration of inflammatory cells into the peripheral nerve tissue. Neuropharmacology. 2002;42:731–9.

    CAS  PubMed  Google Scholar 

  • Kappos L, Li D, Calabresi PA, et al. Ocrelizumab in relapsing–remitting multiple sclerosis: a phase 2, randomised, placebo-controlled, multicentre trial. Lancet. 2011;378:1779–87.

    CAS  PubMed  Google Scholar 

  • Barun B, Bar-Or A. Treatment of multiple sclerosis with anti-CD20 antibodies. Clin Immunol. 2012;142:31–7.

    CAS  PubMed  Google Scholar 

  • Aspen_Global. Azathioprine (Imuran) summary of product characteristics, 2012.

  • Elion GB. The George Hitchings and Gertrude Elion Lecture. The pharmacology of azathioprine. Ann N Y Acad Sci. 1993;685:400–7.

    CAS  PubMed  Google Scholar 

  • La Mantia L, Mascoli N, Milanese C. Azathioprine. Safety profile in multiple sclerosis patients. Neurol Sci. 2007;28:299–303.

    PubMed  Google Scholar 

  • Baxter. Cyclophosphamide summary of product characteristics, 2003.

  • Kovarsky J. Clinical pharmacology and toxicology of cyclophosphamide: emphasis on use in rheumatic diseases. Semin Arthritis Rheum. 1983;12:359–72.

    CAS  PubMed  Google Scholar 

  • Lutsiak ME, Semnani RT, De Pascalis R, et al. Inhibition of CD4(+)25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood. 2005;105:2862–8.

    CAS  PubMed  Google Scholar 

  • Weiner HL, Cohen JA. Treatment of multiple sclerosis with cyclophosphamide: critical review of clinical and immunologic effects. Mult Scler. 2002;8:142–54.

    CAS  PubMed  Google Scholar 

  • Hospira. Methotrexate summary of product characteristics, 1987.

  • Bender RA, Makula DM. Effect of interaction between methotrexate and dihydrofolate reductase on DNA synthesis in L1210 cells in vitro. Br J Cancer. 1978;37:403–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnston A, Gudjonsson JE, Sigmundsdottir H, et al. The anti-inflammatory action of methotrexate is not mediated by lymphocyte apoptosis, but by the suppression of activation and adhesion molecules. Clin Immunol. 2005;114:154–63.

    CAS  PubMed  Google Scholar 

  • Spurlock CF 3rd, Aune ZT, Tossberg JT, et al. Increased sensitivity to apoptosis induced by methotrexate is mediated by JNK. Arthritis Rheum. 2011;63:2606–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Serraj K, Federici L, Maloisel F, et al. Pancytopenia related to low-dose methotrexate: study of five cases and review of the literature. Rev Med Interne. 2007;28:584–8.

    CAS  PubMed  Google Scholar 

  • Roche. CellCept (mycophenolate mofetil) label, FDA approved, 2009.

  • Allison AC, Kowalski WJ, Muller CD, et al. Mechanisms of action of mycophenolic acid. Ann N Y Acad Sci. 1993;696:63–87.

    CAS  PubMed  Google Scholar 

  • Ritter ML, Pirofski L. Mycophenolate mofetil: effects on cellular immune subsets, infectious complications, and antimicrobial activity. Transpl Infect Dis. 2009;11:290–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Michel L, Vukusic S, De Seze J, et al. Mycophenolate mofetil in multiple sclerosis: a multicentre retrospective study on 344 patients. J Neurol Neurosurg Psychiatry. 2014;85:279–83.

    CAS  PubMed  Google Scholar