link.springer.com

Chromosome numbers and their evolutionary meaning in the Sapindales order: an overview - Brazilian Journal of Botany

  • ️Forni-Martins, Eliana Regina
  • ️Tue Jul 13 2021
  • Aryavand A (1975) Contribution à l’étude cytotaxonomique de Biebersteinia multifida DC. (Geraniaceae). C R Hebd Séances Acad Sci Ser D 280:1551–1554

    Google Scholar 

  • Astarini IA, Yan G, Plummer JA (1999) Interspecific Hybridisation of Boronias. Aust J Bot 47:851–864. https://doi.org/10.1071/BT98017

    Article  Google Scholar 

  • Barros e Silva AE, Marques A, Santos KGB, Guerra M (2010) The evolution of CMA bands in Citrus and related genera. Chromosome Res 18:503–514. https://doi.org/10.1007/s10577-010-9130-2

    Article  CAS  Google Scholar 

  • Bationo-Kando P, Zongo J, Siljak-Yakovlev S (2016) First genome size assessment, heterochromatin and rDNA chromosome mapping in the genus Sclerocarya (Anacardiaceae): insight into the new basic chromosome number. Bot Lett 163:11–17. https://doi.org/10.1080/12538078.2015.1132008

    Article  CAS  Google Scholar 

  • Bawa KS (1973) Chromosome numbers of tree species of a lowland tropical community. J Arnold Arbor 54:422–434. https://doi.org/10.5962/bhl.part.4828

    Article  Google Scholar 

  • Bolkhovskikh Z, Grif V, Matvejeva T, Zakharyeva O (1969) Chromosome number of flowering plants (Fedorov A, ed). V.L Komarov Botanical Institute, Academy of Sciences of the USSR, Moscou

    Google Scholar 

  • Briggs D, Walters SM (2016) Plant variation and evolution, 4th edn. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781139060196

    Book  Google Scholar 

  • Brummit RK (2001) World geographical scheme for recording plant distributions. Plant taxonomic database standards no. 2, 2nd edn. Hunt Institute for Botanical Documentation Carnegie Mellon University, Pittsburg

    Google Scholar 

  • Buerki S, Forest F, Stadler T, Alvarez N (2013) The abrupt climate change at the Eocene–Oligocene boundary and the emergence of South-East Asia triggered the spread of sapindaceous lineages. Ann Bot 112:151–160. https://doi.org/10.1093/aob/mct106

    Article  PubMed  PubMed Central  Google Scholar 

  • Clayton JW, Soltis PS, Soltis DE (2009) Recent long-distance dispersal overshadows ancient biogeographical patterns in a pantropical angiosperm family (Simaroubaceae, Sapindales). Syst Biol 58:395–410. https://doi.org/10.1093/sysbio/syp041

    Article  PubMed  Google Scholar 

  • Daly DC, Harley MM, Martínez-Habibe M-C, Weeks A (2011) Burseraceae. In: Kubitski K (ed) Flowering plants. Eudicots. Springer, Berlin, pp 76–104

    Google Scholar 

  • Darling CA (1909) Sex in dioecious plants. Bull Torrey Bot Club 36:177–199. https://doi.org/10.2307/2479114

    Article  Google Scholar 

  • Datta PC, Samanta P (1977) Cytotaxonomy of meliaceae. Cytologia 42:197–208

    Article  Google Scholar 

  • Desai S (1960) Cytology of rutaceae and simarubaceae. Cytologia 25:28–35

    Article  Google Scholar 

  • Dolezel J, Bartos J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 95:99–110. https://doi.org/10.1093/aob/mci005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escudero M, Martín-Bravo S, Mayrose I, Fernández-Mazuecos M, Fiz-Palacios O, Hipp AL, Pimentel M, Jiménez-Mejías P, Valcárcel V, Vargas P, Luceño M (2014) Karyotypic changes through dysploidy persist longer over evolutionary time than polyploid changes. PLoS ONE 9:e85266. https://doi.org/10.1371/journal.pone.0085266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrucci MS (1989) Cromosomas en Cardiospermum y Diplokeleba (Sapindaceae), significado taxonômico y evolutivo. Bonplandia 6:151–164

    Article  Google Scholar 

  • Ferrucci MS (2000) Cytotaxonomy of Sapindaceae with special reference to the tribe Paullinieae. Genet Mol Biol 23:941

    Article  Google Scholar 

  • Figueredo A, Oliveira AWL, Carvalho-Sobrinho JG, Souza G (2016) Karyotypic stability in the paleopolyploid genus Ceiba Mill. (Bombacoideae, Malvaceae). Braz J Bot 39:1087–1093. https://doi.org/10.1007/s40415-016-0296-5

    Article  Google Scholar 

  • Figueroa DM, Bass HW (2010) A historical and modern perspective on plant cytogenetics. Brief Funct Genom 9:95–102. https://doi.org/10.1093/bfgp/elp058

    Article  Google Scholar 

  • Flora do Brasil (2020) Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/. Accessed Jan 2021

  • Gadek PA, Fernando ES, Quinn CJ, Hoot SB, Terrazas T, Sheahan MC, Chase MW (1996) Sapindales: molecular delimitation and infraordinal groups. Am J Bot 83:802–811. https://doi.org/10.1002/j.1537-2197.1996.tb12769.x

    Article  Google Scholar 

  • Glick L, Mayrose I (2014) ChromEvol: assessing the pattern of chromosome number evolution and the inference of polyploidy along a phylogeny. Mol Biol Evol 31:1914–1922. https://doi.org/10.1093/molbev/msu122

    Article  CAS  PubMed  Google Scholar 

  • Goldblatt P (1981) Index to plant chromosome numbers 1975–1978. Monogr Syst Bot Mo Bot Gard 6:1–553

    Google Scholar 

  • Goldblatt P (1984) Index to plant chromosome numbers 1979–1981. Monogr Syst Bot Mo Bot Gard 8:1–427

    Google Scholar 

  • Goldblatt P (1985) Index to plant chromosome numbers 1982–1983. Monogr Syst Bot Mo Bot Gard 13:1–224

    Google Scholar 

  • Goldblatt P (1987) Index to plant chromosome numbers 1984–1985. Monogr Syst Bot Mo Bot Gard 23:1–264

    Google Scholar 

  • Goldblatt P, Johnson DE (1990) Index to plant chromosome numbers 1986–1987. Monogr Syst Bot Mo Bot Gard 30:1–243

    Google Scholar 

  • Goldblatt P, Johnson DE (1991) Index to plant chromosome numbers 1988–1989. Monogr Syst Bot Mo Bot Gard 40:1–238

    Google Scholar 

  • Goldblatt P, Johnson DE (1994) Index to plant chromosome numbers 1990–1991. Monogr Syst Bot Mo Bot Gard 51:1–267

    Google Scholar 

  • Goldblatt P, Johnson DE (1996) Index to plant chromosome numbers 1992–1993. Monogr Syst Bot Mo Bot Gard 58:1–276

    Google Scholar 

  • Goldblatt P, Johnson DE (1998) Index to plant chromosome numbers 1994–1995. Monogr Syst Bot Mo Bot Gard 69:1–208

    Google Scholar 

  • Grimm J (1912) Entwicklungsgeschichtliche Untersuchungen an Rhus und Coriaria. Flora Oder Allg Bot Ztg 104:309–334. https://doi.org/10.1016/s0367-1615(17)31666-x

    Article  Google Scholar 

  • Groppo M, Kallunki JA, Pirani JR, Antonelli A (2012) Chilean Pitavia more closely related to Oceania and Old World Rutaceae than to Neotropical groups: evidence from two cpDNA non-coding regions, with a new subfamilial classification of the family. PhytoKeys 19:9–29. https://doi.org/10.3897/phytokeys.19.3912

    Article  Google Scholar 

  • Guerra M (1984) New chromosome number in Rutaceae. Plant Syst Evol 146:13–30. https://doi.org/10.1007/BF00984051

    Article  Google Scholar 

  • Guerra M (1986) Citogenética de angiospermas coletadas em Pernambuco, I. Rev Bras Genét 9:21–40

    Google Scholar 

  • Guerra M (1988) Introdução à citogenética geral. Guanabara Koogan, Rio de Janeiro

    Google Scholar 

  • Guerra M (1990) A situação da citotaxonomia de angiospermas nos trópicos e, em particular, no Brasil. Acta Bot Bras 4:75–86

    Article  Google Scholar 

  • Guerra M (2000) Chromosome number variation and evolution in monocots. In: Wilson KL (ed) Monocots: Systematics and Evolution. CSIRO, Melbourne, pp 127–136

    Google Scholar 

  • Guerra M (2008) Chromosome numbers in plant cytotaxonomy: concepts and implications. Cytogenet Genome Res 120:339–350. https://doi.org/10.1159/000121083

    Article  CAS  PubMed  Google Scholar 

  • Guerra M (2012) Cytotaxonomy: the end of childhood. Plant Biosyst 146:703–710. https://doi.org/10.1080/11263504.2012.717973

    Article  Google Scholar 

  • Guerra M, Pedrosa A, Barros e Silva AE, Cornélio MTM, Santos K, Soares Filho WS (1997) Chromosome number and secondary constriction variation in 51 accessions of a citrus germplasm. Braz J Genet 20:1–9. https://doi.org/10.1590/S0100-84551997000300021

    Article  Google Scholar 

  • Guerra M, Santos KGB, Silva AEB, Ehrendorfer F (2000) Heterochromatin banding patterns in Rutaceae-Aurantioideae—a case of parallel chromosomal evolution. Am J Bot 87:735–747

    Article  CAS  PubMed  Google Scholar 

  • Guimarães RGS (2018) Estudos citotaxonômicos em Sapindales: estado da arte e evolução dos números cromossômicos. Universidade Estadual de Campinas, Campinas, Dissertação

    Book  Google Scholar 

  • Hanson L, McMahon KA, Johnson MAT, Bennett MD (2001) First nuclear DNA C-values for 25 angiosperm families. Ann Bot 87:251–258. https://doi.org/10.1006/anbo.2000.1325

    Article  CAS  PubMed  Google Scholar 

  • Horibata A, Kato T (2020) Phylogenetic relationships among accessions in Citrus and related genera based on the insertion polymorphism of the CIRE1 retrotransposon. Open Agric 5:243–251. https://doi.org/10.1515/opag-2020-0026

    Article  Google Scholar 

  • Iv APG (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1–20

    Article  Google Scholar 

  • Index to plant chromosome numbers (1979) Goldblatt P, Johnson DE (eds). Missouri Botanical Garden, St Louis

  • James SH (1981) Cytoevolutionary patterns, genetic systems and the phytogeography of Australia. In: Keast A (ed) Ecological biogeography of Australia. W. Junk, The Hague, pp 763–784

    Google Scholar 

  • Khosla PK, Styles BT (1975) Karyological studies and chromosomal evolution in Meliaceae. Silvae Genet 24:2–3

    Google Scholar 

  • Koenen EJ, Clarkson JJ, Pennington TD, Chatrou LW (2015) Recently evolved diversity and convergent radiations of rainforest mahoganies (Meliaceae) shed new light on the origins of rainforest hyperdiversity. New Phytol 207:327–339. https://doi.org/10.1111/nph.13490

    Article  PubMed  Google Scholar 

  • Krishnaswamy N, Raman VS (1949) A note on the chromosome numbers of some economic plants of India. Curr Sci 18:376–378

    CAS  PubMed  Google Scholar 

  • Kubitzki K, Kallunki JA, Duretto M, Wilson PG (2011) Rutaceae. In: Kubitski K (ed) Flowering plants. Eudicots. Springer, Berlin, pp 276–356

    Chapter  Google Scholar 

  • Las Peñas ML, Bernardello G, Steibel PE, Troiani HO (2006) Cytogenetic studies in Schinus species (Anacardiaceae). Arnaldoa 13:270–275

    Google Scholar 

  • Liu J, Ho T, Chen S, Lu A (2001) Karyomorphology of Biebersteinia Stephan (Geraniaceae) and its systematic and taxonomic significance. Bot Bull Acad Sin 42:61–66

    Google Scholar 

  • Lombello RA, Forni-Martins ER (1998) Chromosomal studies and evolution in Sapindaceae. Caryologia 51:81–93

    Article  Google Scholar 

  • Longley AE (1925) Polycarpy, polyspory, and polyploidy in citrus and citrus relatives. J Wash Acad Sci 15:347–351

    Google Scholar 

  • Magallon S, Crane PR, Herendeen PS (1999) Phylogenetic pattern, diversity, and diversification of eudicots. Ann Mo Bot Gard 86:297–372

    Article  Google Scholar 

  • Marhold K (2006–2020) IAPT/IOPB chromosome data 1–33. In: Marhold et al (ed) IOPB column. Taxon 55–69

  • Mayrose I, Barker MS, Otto SP (2010) Probabilistic models of chromosome number evolution and the inference of polyploidy. Syst Biol 59:132–144. https://doi.org/10.1093/sysbio/syp083

    Article  PubMed  Google Scholar 

  • Mendes S, Moraes AP, Mirkov TE, Pedrosa-Harand A (2011) Chromosome homeologies and high variation in heterochromatin distribution between Citrus L. and Poncirus Raf. as evidenced by comparative cytogenetic mapping. Chromosome Res 19:521–530. https://doi.org/10.1007/s10577-011-9203-x

    Article  CAS  PubMed  Google Scholar 

  • Mendes S, Régis T, Terol J, Soares Filho WS, Talon M, Pedrosa-Harand A (2020) Integration of mandarin (Citrus reticulata) cytogenetic map with its genome sequence. Genome 63:437–444. https://doi.org/10.1139/gen-2020-0046

    Article  CAS  PubMed  Google Scholar 

  • Minfray E (1963) Contribution à l’étude caryo-taxinomique des Méliacées. Bull Soc Bot Fr 110:80–192

    Article  Google Scholar 

  • Miranda M, Ikeda F, Endo T, Moriguchi T, Omura M (1997) Comparative analysis on the distribution of heterochromatin in Citrus, Poncirus and Fortunella chromosomes. Chromosome Res 5:86–92

    Article  CAS  PubMed  Google Scholar 

  • Moore RJ (1973) Index to Plant Chromosome Numbers 1967–1971. Regnum Veg 90:1–539

    Google Scholar 

  • Moore RJ (1974) Index to Plant Chromosome Numbers for 1972. Regnum Veg 91:1–108

    Google Scholar 

  • Moore RJ (1977) Index to Plant Chromosome Numbers for 1973–1974. Regnum Veg 96:1–257

    Google Scholar 

  • Moraes AP, Mirkov TE, Guerra M (2008) Mapping the chromosomes of Poncirus trifoliata Raf. by BAC-FISH. Cytogenet Genome Res 121:277–281. https://doi.org/10.1159/000138897

    Article  CAS  PubMed  Google Scholar 

  • Muellner-Riehl AN, Weeks A, Clayton JW, Buerki S, Nauheimer L, Chiang Y-C, Cody S, Pell SK (2016) Molecular phylogenetics and molecular clock dating of Sapindales based on plastid rbcL, atpB and trnL-trnF DNA sequences. Taxon 65:1019–1036. https://doi.org/10.12705/655.5

    Article  Google Scholar 

  • Muellner AN, Vassiliades DD, Renner SS (2007) Placing Biebersteiniaceae, a herbaceous clade of Sapindales, in a temporal and geographic context. Plant Syst Evol 266:233–252. https://doi.org/10.1007/s00606-007-0546-x

    Article  Google Scholar 

  • Nakajima G (1942) Cytological studies in some flowering dioecious plants, with special reference to the sex chromosomes. Cytologia 12:262–270. https://doi.org/10.1508/cytologia.12.262

    Article  Google Scholar 

  • Nascimento EFMB, Santos BV, Marques LOC, Guimarães PM, Brasileiro ACM, Leal-Bertioli SCM, Bertioli DJ, Araujo ACG (2018) The genome structure of Arachis hypogaea (Linnaeus, 1753) and an induced Arachis allotetraploid revealed by molecular cytogenetics. Comp Cytogenet 12:111–140. https://doi.org/10.3897/CompCytogen.v12i1.20334

    Article  PubMed  PubMed Central  Google Scholar 

  • Negodi G (1937) Lineamenti sulla cariologia delle Rutaceae e delle Zygophyllaceae. Arch Bot (forli) 13:92–102

    Google Scholar 

  • Ollitrault P, Curk F, Krueger R (2020) Citrus taxonomy. In: Talon M, Caruso M, Gmitter FG Jr (eds) The Genus Citrus. Woodhead Publishing, Cambridge, pp 57–81. https://doi.org/10.1016/b978-0-12-812163-4.00004-8

    Chapter  Google Scholar 

  • Paetow W (1931) Embryologische Untersuchungen an Taccaceen, Meliaceen und Dilleniaceen. Planta 14:441–470. https://doi.org/10.1007/bf01923290

    Article  Google Scholar 

  • Raven PH (1975) The bases of angiosperm phylogeny: cytology. Ann Mo Bot Gard 62:724–764

    Article  Google Scholar 

  • Rice A, Glick L, Abadi S, Einhorn M, Kopelman NM, Salman-Minkov A, Mayzel J, Chay O, Mayrose I (2015) The Chromosome Counts Database (CCDB)–a community resource of plant chromosome numbers. New Phytol 206:19–26

    Article  PubMed  Google Scholar 

  • Romero-da-Cruz MV, Guimarães R, Devecchi MF, Pirani JR, Forni-Martins ER (2021) Chromosome numbers in Homalolepis Turcz. and their significance in Simaroubaceae evolution. Braz J Bot. https://doi.org/10.1007/s40415-021-00729-5

    Article  Google Scholar 

  • Shan F, Yan G, Plummer JA (2006) Basic chromosome number in Boronia (Rutaceae)-Competing hypotheses examined. Aust J Bot 54:681–689. https://doi.org/10.1071/BT05050

    Article  CAS  Google Scholar 

  • Shan F, Yan G, Plummer JA (2003) Karyotype evolution in the genus Boronia (Rutaceae). Bot J Linn Soc 142:309–320

    Article  Google Scholar 

  • Silva SC, Mendes S, Soares Filho WS, Pedrosa-Harand A (2015) Chromosome homologies between Citrus and Poncirus the comparative cytogenetic map of mandarin (Citrus reticulata). Tree Genet Genomes 11:811. https://doi.org/10.1007/s11295-014-0811-4

    Article  Google Scholar 

  • Singhal VK, Gill BS, Bir SS (1983) Cytopalynology of some members of Rutaceae. Proc Plant Sci 92:381–385

    Article  Google Scholar 

  • Smith-White S (1954) Chromosome numbers in the Boronieae (Rutaceae) and their bearing on the evolutionary development of the tribe in the Australian flora. Aust J Bot 2:287–303

    Article  Google Scholar 

  • Soltis PS, Marchant DB, Van de Peer Y, Soltis DE (2015) Polyploidy and genome evolution in plants. Curr Opin Genet Dev 35:119–125. https://doi.org/10.1016/j.gde.2015.11.003

    Article  CAS  PubMed  Google Scholar 

  • Souza VC, Lorenzi H (2012) Botânica sistemática: guia ilustrado para identificação das plantas nativas e exóticas do Brasil, baseado em APG III. Instituto Plantarum, Nova Odessa

  • Stace CA (2000) Cytology and cytogenetics as a fundamental taxonomic resource for the 20th and 21st centuries. Taxon 49:451–477

    Article  Google Scholar 

  • Stace CA (1991) Plant taxonomy and biosystematics, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Stace HM, Armstrong JA (1992) New chromosome numbers for Rutaceae. Aust Syst Bot 5:501–505

    Article  Google Scholar 

  • Stace CA (1989–2002) IOPB Chromosome Data 1–18 In: Newsl int organ plant biosyst 13–34

  • Stace HM, Armstrong JA, James SH (1993) Cytoevolutionary patterns in Rutaceae. Plant Syst Evol 187:1–28

    Article  Google Scholar 

  • Stebbins GL (1971) Chromosomal evolution in higher plants. JW Arrowsmith Ltd., Bristol

    Google Scholar 

  • Urdampilleta JD, Coulleri JP, Ferrucci MS, Forni-Martins ER (2013) Karyotype evolution and phylogenetic analyses in the genus Cardiospermum L. (Paullinieae, Sapindaceae). Plant Biol 15:868–881. https://doi.org/10.1111/j.1438-8677.2012.00679.x

    Article  CAS  PubMed  Google Scholar 

  • Urdampilleta JD, Forni-Martins ER, Ferrucci MS (2020) Polyploidy in Paullinia (Paullinieae, Sapindaceae) and it systematic implications. Syst Bot 45:873–878. https://doi.org/10.1600/036364420X16033962925196

    Article  Google Scholar 

  • Wang H, Moorec MJ, Soltis PS, Belle CD, Brockington SF, Alexandre R, Davis CC, Latvisb M, Manchesterd SR, Soltis DE (2009) Rosid radiation and the rapid rise of angiosperm-dominated forests. Proc Natl Acad Sci 106:3853–3858. https://doi.org/10.1073/pnas.0813376106

    Article  PubMed  PubMed Central  Google Scholar 

  • Watson JD, Crick FH (1953) Molecular structure of nucleic acids. Nature 171:737–738

    Article  CAS  PubMed  Google Scholar 

  • Weeks A, Zapata F, Pell SK, Daly DC, Mitchell JD, Fine PVA (2014) To move or to evolve: contrasting patterns of intercontinental connectivity and climatic niche evolution in “Terebinthaceae” (Anacardiaceae and Burseraceae). Front Genet 5:1–19. https://doi.org/10.3389/fgene.2014.00409

    Article  Google Scholar 

  • Worberg A, Alford MH, Quandt D, Borsch T (2009) Huerteales sister to Brassicales plus Malvales, and newly circumscribed to include Dipentodon, Gerrardina, Huertea, Perrottetia and Tapiscia. Taxon 58:468–478

    Article  Google Scholar 

  • Yamamoto M, Tominaga S (2003) High chromosomal variability of mandarins (Citrus spp.) revealed by CMA banding. Euphytica 129:267–274

    Article  CAS  Google Scholar 

  • Yamamoto M, Abkenar AA, Matsumoto R, Nesumi H, Yoshida T, Kuniga T, Kubo T, Tominaga S (2007) CMA banding patterns of chromosomes in major Citrus species. J Jpn Soc for Hortic Sci 76:36–40

    Article  Google Scholar 

  • Yamamoto M, Abkenar AA, Matsumoto R, Kubo T, Tominaga S (2009) Physical mapping of the 5S ribosomal RNA gene in Citreae of Aurantioideae species using fluorescence in situ hybridization. J Jpn Soc Hortic Sci 78:294–299. https://doi.org/10.2503/jjshs1.78.294

    Article  CAS  Google Scholar