link.springer.com

Application of Biodegradable Polymers in Food Packaging Industry: A Comprehensive Review - Journal of Packaging Technology and Research

  • ️Mahanti, Naveen K.
  • ️Thu Nov 29 2018
  • European Bioplasticsa (2016) Bioplastics facts and figures . Available at: http://www.european-bioplastics.org/. Accessed on 01 Mar 2017

  • Government of India (2015) Chemical and petrochemicals statistics at a glance

  • European Commission (2013) Plastic waste—strategy and background. http://ec.europa.eu/environment/waste/plastic_waste.htm Accessed 15 Feb 2017

  • FICCI (2014) Potential of plastics industry in northern India with special focus on plastic culture and food processing

  • TripathiAD YadavA, JhaA SrivastavaSK (2012) Utilization of sugar refinery waste (cane molasses) for production of bioplastic under submerged fermentation process. J Polym Environ 20(2):446–453

    Article  Google Scholar 

  • Smith R (2005) Biodegradable polymers for industrial applications. Woodhead Publishing, Limited, pp 3–29, 140–158, 189–213, 251–281

  • Lu DR, Xiao CM, Xu SJ (2009) Starch-based completely biodegradable polymer materials. Exp Polym Lett 3(6):366–375

    Article  Google Scholar 

  • Luckachan GE, Pillai CKS (2006) Chitosan/oligo l-lactide graft copolymers effect of hydrophobic side chains on the physico-chemical properties and biodegradability. Carbohyd Polym 24:254–266

    Article  Google Scholar 

  • Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798

    Article  Google Scholar 

  • Hernandez-Munoz P, Kanavouras A (2003) Development and characterization of biodegradable films made from wheat gluten protein. J Agric Food Chem 51(26):7647–7654

    Article  Google Scholar 

  • Ana RVF, Vítor DA, Isabel MC (2016) Polysaccharide-based membranes in food packaging applications. Membranes 6(2):22

    Article  Google Scholar 

  • Johnson RM, Tucker N, Barnes S (2003) Impact properties of Miscanthus/Novamont MaterBI bio composites. Polym Testing 22:209–215

    Article  Google Scholar 

  • Ahvenainen R (2003) Novel food packaging techniques. Wood head Publishing, Limited, Cambridge

    Book  Google Scholar 

  • Halley P (2002) Biodegradable packaging for the food industry. Packag Bottling Int 4(4):56–57

    Google Scholar 

  • Kirwan MJ, Strawbridge JM (2003) Plastics in food packaging. In: Coles R, Macdowell D, Kirwan MJ (eds) Food packaging technology. Blackwell Publishing, Oxford, pp 174–240

    Google Scholar 

  • Maharana T, Mohanty B, Negi YS (2009) Melt-solid polycondensation of lactic acid and its biodegradability. Prog Polym Sci 34:99–124

    Article  Google Scholar 

  • Auras R, Singh SP, Singh JJ (2005) Evaluation of oriented poly (lactide) polymers vs. existing PET and oriented PS for fresh food service containers. Packag Technol Sci 18:207–216

    Article  Google Scholar 

  • European Bioplasticsb (2016) Biopolymers facts and statistics. Institute for Bioplastics and Composites. Hochschule Hannover University of Applied sciences and arts. https://www.google.co.in/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#q=biopolymers+facts+and+statistics+2016&. Accessed 27 Jan 2017

  • Mangaraj S, Goswami TK (2009) Modified atmosphere packaging—an ideal food preservation technique. J Food Sci Technol 46(5):399–410

    Google Scholar 

  • Mangaraj S, Goswami TK (2009) Enzyme kinetic based modelling of respiration rates of guava for CA/MA storage. J Food Sci Technol 46(6):525–531

    Google Scholar 

  • Mangaraj S, Goswami TK (2011) Measurement and modelling of respiration rates of guava (cv. Baruipur) for modified atmosphere packaging. Int J Food Prop 14(3):609–628

    Article  Google Scholar 

  • Mangaraj S, Goswami TK (2011) Modelling of respiration rates of litchi fruit under aerobic condition. Food Bioproc Technol Int J 4:272–281

    Article  Google Scholar 

  • Mangaraj S, Goswami TK, Mahajan PV (2009) Application of plastic films in modified atmosphere packaging of fruits and vegetables—a review. Food Eng Rev 1:133–158

    Article  Google Scholar 

  • Mangaraj S, Sadawat IJ, Prasad S (2011) Assessment of quality of pears stored under laminated modified atmosphere packages. Int J Food Prop 14(5):1–14

    Article  Google Scholar 

  • Mangara S, Goswami TK, Giri SK, Tripathi MK (2012) Permselective MA packaging of litchi (cv. Shahi) for preserving quality and extension of shelf-life. Postharvest Biol Technol 71:1–12

    Article  Google Scholar 

  • Mangaraj S, Tripathi MK (2013) Sensory quality evaluation of MA packaged fruits applying Fuzzy logic. Trends Biosci 6(2):195–199

    Google Scholar 

  • Mangaraj S, Goswami TK, Giri SK, Chandra P (2013) Development and evaluation of MA packages employing lamination technique for royal delicious apple. Emir J Food Agric 25(5):358–375

    Article  Google Scholar 

  • Mangaraj S, Goswami TK, Mahajan PV (2014) Development and validation of a comprehensive model for MAP of fruits based on Enzyme kinetics theory and Arrhenius relation. J Food Sci Technol 52(7):4286–4295

    Article  Google Scholar 

  • Mangaraj S, Goswami TK, Giri SK, Joshy CG (2014) Design and development of a modified atmosphere packaging system for guava (cv. Baruipur). J Food Sci Technol 51(11):2925–2946

    Article  Google Scholar 

  • Peelmana N, Ragaerta P, Vandemoortelea A, Verguldta E, Meulenaer BD, Devliegherea F (2014) Use of biobased materials for modified atmosphere packaging of short and medium shelf-life food products. Innov Food Sci Emerg Technol 26:319–329

    Article  Google Scholar 

  • Robertson GL (2012) Food packaging: principles and practice, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  • Gu JD, Ford TE, Mitton DB, Mitchell R (2000) Microbial degradation and deterioration of polymeric materials. In: Revie W (ed) The Uhlig corrosion handbook, 2nd edn. Wiley, New York, p 439

    Google Scholar 

  • Robertson GL (2006) Food packaging principles and practice, 2nd edn. CRC Press Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Imam S, Glenn G, Chiou BS, Shey J, Narayan R, Orts W (2008) Types, production and assessment of bio-based food packaging materials. In: Chiellini E (ed) Environmentally compatible food packaging. Woodhead Publishing Ltd, Cambridge, pp 29–62

    Chapter  Google Scholar 

  • Webb HK, Arnott J, Crawford RJ, Ivanova EP (2013) Plastic degradation and its environmental implications with special reference to poly (ethylene terephthalate). Polymers 5:1–18

    Article  Google Scholar 

  • Malathy AN, Santhosh KS, Nidoni U (2014) Recent trends of biodegradable polymer: biodegradable films for food packaging and application of nanotechnology in biodegradable food packaging. Curr Trends Technol Sci 3:73–79

    Google Scholar 

  • Averous L, Pollet E (2012) Environmental silicate nano-biocomposites. Springer, London

    Book  Google Scholar 

  • Bastioli C (2005) Hand book of biodegradable polymers. Rapra Technology Limited, Shropshire

    Google Scholar 

  • Mangaraj S, Goswami TK, Panda DK (2015) Modeling of gas transmission properties of polymeric films used for MA Packaging of fruits. J Food Sci Technol 52(9):5456–5469

    Article  Google Scholar 

  • Weber CJ (2000) Biobased Packaging materials for the food industry: status and perspectives. A European Concerted Action. ISBN 87-90504-07-0

  • Doppalapudi S, Jain A, Khan W, Domb AJ (2014) Biodegradable polymers-an overview. Polym Adv Technol 25:427–435

    Article  Google Scholar 

  • Trinetta V (2016) Biodegradable packaging. Reference module in food sciences. https://doi.org/10.1016/B978-0-08-100596-5.03351-5. Accessed 01 Feb 2017

  • Flieger M, Kantorova M, Prell A, Rezanka T, Votruba J (2003) Biodegradable plastics from renewable sources. Folia Microbiol 48(1):27–44

    Article  Google Scholar 

  • Leja K, Lewandowicz G (2010) Polymer biodegradation and biodegradable polymers—a review. Polish J Environ Stud 19(2):255–266

    Google Scholar 

  • Tripathi AD, Srivastava SK, Yadav A (2014) Biopolymers potential biodegradable packaging material for food industry. In: Polymers for packaging applications. Apple Academic Press

  • Siracusa V, Rocculi P, Romani S, Rosa MD (2008) Biodegradable polymers for food packaging : a review. Trends Food Sci Technol 19:634–643

    Article  Google Scholar 

  • Weber CJ, Haugaard V, Festersen R, Bertelsen G (2002) Production and applications of biobased packaging materials for the food industry. Food Addit Contam 19:172–177

    Article  Google Scholar 

  • Yavuz H, Babac C (2003) Preparation and biodegradation of starch/polycaprolactone films. J Polym Environ 1:107–113

    Article  Google Scholar 

  • Ezeoha SL, Ezenwanne JN (2013) Production of biodegradable plastic packaging film from cassava starch. IOSR J Eng 3(10):14–20

    Article  Google Scholar 

  • Balakrishnan P, Sreekala MS, Kunaver M, Huskić M, Thomas S (2017) Morphology, transport characteristics and viscoelastic polymer chain confinement in nanocomposites based on thermoplastic potato starch and cellulose nanofibers from pineapple leaf. Carbohyd Polym 2017(169):176–188

    Article  Google Scholar 

  • Larotondo FDS, Mastsui KN, Soldi V, Laurindo JB (2014) Biodegradable films made from raw and acetylated cassava starch. Braz Arch Biol Technol 47:3

    Google Scholar 

  • Aini NNBM (2010) Thesis. Biodegradable biocomposite starch based films blended with chitosan and gelatin. Faculty of Chemical and Natural Resources Engineering. University Malaysia Pahang

  • Salleh I, Muhamad I, Khairuddin (2009) Structural characterization and physical properties of antimicrobial starch based films. World Acad Sci Eng Technol 3(7):410–418

    Google Scholar 

  • Azahari NA, Othman N, Ismail H (2011) Biodegradation studies of Polyvinyl Alchol/Corn starch blend films in solid and solution mesia. J Phys Sci 22(2):15–31

    Google Scholar 

  • Tome LC, Fernandes SCM, Sadcocco P, Causio J, Silvestre AJD, Neto CP, Freire CSR (2012) Antimicrobial thermoplastic starch chitosan based materials prepared by melt-mixing. BioResource 7(3):3398–3409

    Google Scholar 

  • Wang H, Wang W, Jiang S, Zahi L, Jiang Q (2011) Poly (Vinyl alcholo)/oxidised starch fibres via electrospinning technique: fabrication and characterization. Iran Polym J 20:551–558

    Google Scholar 

  • Fabio DS, Larotonda KN, Matsui VS, Laurindo JB (2004) Biodegradable films made from raw and acetylated cassava starch. Braz Arch Biol Technol 47(3):477–484

    Article  Google Scholar 

  • Wawa R (2009) Development of LDPE/sago based Biofilm via blow film molding technique. Unpublished thesis. Faculty of chemical and natural resources engineering. Universiti Teknologi Malaysia

  • Dias AB, Muller CMO, Larotonda FDS, Laurindo JB (2010) Biodegradable films based on rice starch and rice flour. J Cereal Sci 51:213–219

    Article  Google Scholar 

  • Parvin F, Rahman MA, Islam JMM, Khan MA, Saadat AHM (2010) Preparation and characterization of starch/PVA blend for biodegradable packaging material. Adv Mater Res 351–354

  • Polnaya FJ, Haryadi JT, Marseno DW (2012) Properties of biodegradable films from hydroxypropyl sago starches. Asian J Food Agro-Ind 5(03):183–192

    Google Scholar 

  • Park JW, Im SS, Kim SH, Kim YH (2000) Biodegradable polymer blends of poly(l-lactic acid) and gelatinized starch. Polym Eng Sci 40:2539–2550

    Article  Google Scholar 

  • Nayak K, Gupta P (2012) Protein based biodegradable polymer for food and non-food packaging: a review. In: Conference: third international conference on natural polymers, bio-polymers, bio-materials, their composites, blends, IPNs, polyelectrolytes and gels: macro to nano scales (ICNP-2012) at: Mahatma Gandhi University, Kottayam, Kerala, India, vol 3 October 2012

  • Jang WY, Shin BY, Lee TJ, Narayan R (2007) Thermal properties and morphology of biodegradable PLA/starch compatibilized blends. J Ind Eng Chem 13(3):457–464

    Google Scholar 

  • Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31:576–602

    Article  Google Scholar 

  • Garlotta Donald (2001) A literature review of poly (lactic acid). J Polym Environ 9(2):63–84

    Article  Google Scholar 

  • Valdes A, Mellinas AC, Ramos M (2014) Natural additives and agricultural wastes in biopolymer formulations for food packaging. Front Chem 2:1–10

    Article  Google Scholar 

  • Cabedo L, Feijoo JL, Villanueva M, Lagaron JM, Gimenez E (2006) Optimization of Biodegradable nanocomposites based on a PLA/PCL blends for food packaging applications. Macromol Symp 233:191–197

    Article  Google Scholar 

  • John RP, Gangadharan D, Nampoothiri KM (2008) Genome shuffling of Lactobacillus delbrueckii mutant and Bacillus amyloliquefaciens through protoplasmic fusion for l-lactic acid production from starchy wastes. Biores Technol 99:8008–8015

    Article  Google Scholar 

  • John RP, Nampoothiri KM, Pandey A (2006) Solid-state fermentation for L-lactic acid production from agro wastes using Lactobacillus delbrueckii. Proc Biochem J 41:759–763

    Article  Google Scholar 

  • Pawar PA, Purwar AH (2013) Bioderadable polymers in food packaging. Am J Eng Res 2(5):151–164

    Google Scholar 

  • Villada CHM, Navia PDP, Castaneda NJP (2013) Biodegradable films obtained from cassava starch and their manufacture process. WO 2013042083 A1

  • Law P, LongdonT, Perez D, Gomis M (2014 ) Starch-based biodegradable material. EP 2712889 A1

  • JH, Funk SA (2012) Biodegradable packaging film.US 8188185 B2

  • Tweed EC, McDaniel JB (2012) Polylactic acid shrink films and methods of casting. US 8263197 B2

  • Xu Q (2011) Biodegradable packaging materials with enhanced oxygen barrier performance US 20110135912 A1

  • Tweed EC, Stephens HM, Riegert TE (2012) Polylactic acid blown film and method of manufacturing.US 8133558 B2

  • TokiwaY, Raku T (2006) Biodegradable polylactide resin composition.US 6987138 B2

  • Galego N, Rozsa C, Sanchez R, Fung J, Vazquez A, Tomas JS (2000) Characterization and application of poly (b-hydroxyalkanoates) family as composite biomaterials. Polym Test J 19:485–492

    Article  Google Scholar 

  • Steinbuche A, Fuchtenbusch B (1998) Bacterial and other biological systems for polyester production. Trends Biotechnol 16:419–427

    Article  Google Scholar 

  • Sanchez-Garcia MD, Lopez-Rubio A, Lagaron JM (2010) Natural micro and nanobiocomposites with enhanced barrier properties and novel functionalities for food biopackaging applications. Trends Food Sci Technol 21(11):528–536

    Article  Google Scholar 

  • Trainer MA, Charles TC (2006) The role of PHB metabolism in the symbiosis of rhizobia with legumes. Appl Microbiol Biotechnol 71(4):377–386

    Article  Google Scholar 

  • Vieira MGA, da Silva MA, dos Santos LO, Beppu MM (2011) Natural-based plasticizers and biopolymer films: a review. Eur Polymer J 47(3):254–263

    Article  Google Scholar 

  • Yalcin B, Cakmak M, Arkın AH, Hazer B, Erman B (2006) Control of optical anisotropy at large deformations in PMMA/chlorinated-PHB (PHB-Cl) blends: Mechano-optical behavior. Polymer 47(24):8183–8193

    Article  Google Scholar 

  • Sasikala CH, Ramana CV (1996) Biodegradable polyesters. Adv Appl Microbiol 42:97–218

    Article  Google Scholar 

  • Dunlop WF, Robards AW (1973) Ultrastructural study of poly-hydroxybutyrate granules from Bacillus cereus. J Bacteriol 114(3):1271–1280

    Google Scholar 

  • DoiY Abe C (1990) Biosynthesis and characterization of new bacterial copolyester of 3-hydroxyalkanoates and 3-hydroxy-ω-chloroalkanoates. Macromolecules 23:3705–3707

    Article  Google Scholar 

  • Giacalone G, Chiabrando V (2013) Modified atmosphere packaging of sweet cherries with biodegradable films. Int Food Res J 20(3):1263–1268

    Google Scholar 

  • Mistriotisa A, Giannoulis A, Giannopoulos D, Briassoulis D (2011) Analysis of the effect of perforation on the permeability of biodegradable non-barrier films. 11th International Congress of Engineering and Food (ICEF11). Proc Food Sci 1:32–38

    Article  Google Scholar 

  • Muratore G NMA, Del NMA, Buonocore GG, Lanza CM, Asmundo CN (2006) The influence of using biodegradable packaging films on the quality decay kinetic of plum tomato (PomodorinoDatterino®). J Food Eng 67:393–399

    Google Scholar 

  • Guillaume C, Schwab I, Gastaldi E, Gontard N (2010) Biobased packaging for improving preservation of fresh common mushroom (Agaricusbisporous L.). Innov Food Sci Emerg Technol 11:690–696

    Article  Google Scholar 

  • Makino Y, Hirata T (1997) Modified atmosphere packaging of fresh produce with a biodegradable laminate of chitosan-cellulose and polycarprolactone. Postharvest Biol Technol 247–254

  • Rahaman AA, Bishop C (2013) Evaluating the effects of biodegradable and conventional modified atmosphere packaging on the shelf life of organic Cavendish bananas. J Postharvest Technol 01(01):029–035

    Google Scholar 

  • Koide S, Shi J (2007) Microbial and quality evaluation of green peppers stored in biodegradable film packaging. Food Control 18:1121–1125

    Article  Google Scholar 

  • Srinivasa PC, Baskaran R, Ramesh MN, Prashanth KVH, Tharanathan RN (2002) Storage studies of mango packed using biodegradable chitosan film. Eur Food Res Technol 215:504–508

    Article  Google Scholar 

  • Stefani R, Vinhal GLRRB, Nascimento DV, Pereira MCS, Pertuzatti PB, da Silva Chaves K (2016) Smart biopolymers in food industry. In: Hosseini M, Makhlouf A (eds) Industrial applications for intelligent polymers and coatings. Springer, Cham, pp 253–269

    Chapter  Google Scholar 

  • ASTM E96 (2016) Standard test methods for water vapor transmission of materials, 2007. ASTM International, Conshohocken, PA

    Google Scholar 

  • ASTM F1927 (2014) Standard test method for determination of oxygen gas transmission rate, permeability and permeance at controlled relative humidity through barrier materials using a coulometric detector, 2007. ASTM International, West Conshohocken

    Google Scholar 

  • Krasnova I, Dukalska L, Seglina D, Juhnevica K, Sne E, Karklina D (2012) Effect of passive modified atmosphere in different packaging materials on fresh-cut mixed fruit salad quality during storage. Int J Biol Biomol Agric Food Biotechnol Eng 6(7):468–476

    Google Scholar 

  • Velde VDK, Kiekens P (2002) Biopolymers: overview of several properties and consequences on their applications. Polym Testing 21:433–442

    Article  Google Scholar 

  • Kale G, Auras R, Singh SP, Narayan R (2007) Biodegradability of polylactide bottles in real and stimulated composting conditions. Polym Test J 26:1049–1061

    Article  Google Scholar 

  • Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo JE (2008) Polymer biodegradation: mechanisms and estimation techniques—a review. Chemosphere 73:429–442

    Article  Google Scholar 

  • Wang J, Gardner DJ, Stark NM, Bousfield DW, Tajvidi M, Cai Z (2018) Moisture and oxygen barrier properties of cellulose nanomaterial-based films. ACS Sustain Chem Eng 6(1):49–70

    Article  Google Scholar 

  • Kruijf ND, Beest MV, Rijk R, Sipilainen-Malm T, Losada PP, Meulenaer BD (2002) Active and intelligent packaging: applications and regulatory aspects. Food Addit Contam 19(suppl 1):144–162

    Article  Google Scholar 

  • Seydim AC, Sarikus G (2006) Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Res Intl 39(5):639–644

    Article  Google Scholar 

  • Kechichian V, Ditchfield C, Veiga-Santos P, Tadini CC (2010) Natural antimicrobial ingredients incorporated in biodegradable films based on cassava starch. LWT—Food. Sci Technol 43(7):1088–1094

    Google Scholar 

  • Jo H-J, Park K-M, Na JH, Min SC, Park KH, Chang P-S, Han J (2015) Development of anti-insect food packaging film containing a polyvinyl alcohol and cinnamon oil emulsion at a pilot plant scale. J Stored Prod Res 61:114–118

    Article  Google Scholar 

  • Manso S, Becerril R, Nerin C, Gomez-Lus R (2015) Influence of pH and temperature variations on vapor phase action of an antifungal food packaging against five mold strains. Food Contr 47:20–26

    Article  Google Scholar 

  • Aider M (2010) Chitosan application for active bio-based films production and potential in the food industry: review. LWT Food Sci Technol 43(6):837–842

    Article  Google Scholar 

  • Lei J, Yang L, Zhan Y, Wang Y, Ye T, Li Y, Deng H, Li B (2014) Plasma treated polyethylene terephthalate/polypropylene films assembled with chitosan and various preservatives for antimicrobial food packaging. Coll Surf B Biointerf 114:60–66

    Article  Google Scholar 

  • Van Den Broek LAM, Knoop RJI, Kappen FHJ, Boeriu CG (2015) Chitosan films and blends for packaging material. Carbohydr Polym 116:237–242

    Article  Google Scholar 

  • Rhim JW, Park HM, Ha CS (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38:1629–1652

    Article  Google Scholar 

  • Fernandez A, Cava D, Ocio MJ, Lagaron JM (2008) Perspectives for biocatalysts in food packaging. Trends Food Sci Technol 19(4):198–206

    Article  Google Scholar 

  • Gouvea DM, Mendonca RCS, Soto ML, Cruz RS (2015) Acetate cellulose film with bacteriophages for potential antimicrobial use in food packaging. LWT Food Sci Technol 63(1):85–91

    Article  Google Scholar 

  • Appendini P, Joseph HH (2002) Review of antimicrobial food packaging. Innov Food Sci Emerg Technol 3:113–126

    Article  Google Scholar 

  • Emadian SM, Onay TT, Demirel B (2016) Biodegradation of bioplastics in natural environments. Waste Manage 59:526–536

    Article  Google Scholar 

  • Artham T, Doble M (2008) Biodegradation of aliphatic and aromatic polycarbonates. Macromol Biosci 8(1):14–24

    Article  Google Scholar 

  • Gu JD, Ford TE, Mitton DB, Mitchell R. Microbial degradation and deterioration of polymeric material. In: Review W (ed) The Uhling corrosion handbook, 2nd edn. Wiley, New York, pp 439–460

  • Rahaman PMD, Ali WA, Jamaluddin RR, Mohamad J (2009) Development of low density polyethylene/sago based biofilm via blow film molding technique. Research report, Faculty of Chemical and Natural Resources Engineering UniversitiTeknologi Malaysia

  • Muller RJ (2005 ) Biodegradability of polymers: regulations and methods for testing. https://doi.org/10.1002/3527600035.bpola012

  • Gautam N, Kaur I (2013) Soil burial biodegradation studies of starch grafted polyethylene and identification of Rhizobium meliloti therefrom. J Environ Chem Ecotoxicol 5(6):147–158

    Google Scholar 

  • Obasi HC, Onuoha FN, Eze IO, Nwanonenyi SC, Arukalam IO, Uzoma PC (2013) Effect of soil burial on properties of polypropylene (pp)/plasticized potato starch (pps) blends. Int J Eng Sci 2(8):14–18

    Google Scholar 

  • Bhattacharya M, Reis RL, Correlo V, Boesel L (2005) Material properties of biodegradable polymers. In: Smith R (ed) Biodegradable polymers for industrial applications. Wood head Publishing Limited, England

    Google Scholar