link.springer.com

Metformin and gut microbiota: their interactions and their impact on diabetes - Hormones

  • ️Tsagarakis, Stylianos
  • ️Mon Feb 04 2019
  • Backhed F (2005) Host-bacterial mutualism in the human intestine. Science 307:1915–1920

    Article  CAS  PubMed  Google Scholar 

  • Gill SR, Pop M, DeBoy RT et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14(8):e1002533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin J, Li Y, Cai Z et al (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490:55–60

    Article  CAS  PubMed  Google Scholar 

  • Karlsson FH, Tremaroli V, Nookaew I et al (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498:99–103

    Article  CAS  PubMed  Google Scholar 

  • Larsen N, Vogensen FK, van den Berg FWJ et al (2010) Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 5:e9085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Shen D, Fang Z et al (2013) Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One 8:e71108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tilg H, Moschen AR (2014) Microbiota and diabetes: an evolving relationship. Gut 63:1513–1521

    Article  CAS  PubMed  Google Scholar 

  • Forslund K, Hildebrand F, Nielsen T et al (2015) Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528:262–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de la Cuesta-Zuluaga J, Mueller NT, Vanessa Corrales-Agudelo V et al (2017) Metformin is associated with higher relative abundance of mucin-degrading Akkermansia muciniphila and several short-chain fatty acid-producing microbiota in the gut. Diabetes Care 40:54–62

    Article  CAS  PubMed  Google Scholar 

  • Bennett D (2005) Growing pains for metabolomics. Scientist 19(8):25–28

    Google Scholar 

  • Pedersen HK, Gudmundsdottir V, Nielsen HB et al (2016) Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535:376–381

    Article  CAS  PubMed  Google Scholar 

  • Perry RJ, Peng L, Barry NA et al (2016) Acetate mediates a microbiome-brain-beta-cell axis to promote metabolic syndrome. Nature 534:213–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee H, Ko G (2014) Effect of metformin on metabolic improvement and gut microbiota. Appl Environ Microbiol 80:5935–5943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin NR, Lee JC, Lee HY et al (2014) An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63:727–735

    Article  CAS  PubMed  Google Scholar 

  • Napolitano A, Miller S, Nicholls AW et al (2014) Novel gut-based pharmacology of metformin in patients with type 2 diabetes mellitus. PLoS One 9:e100778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gall WE, Beebe K, Lawton KA et al (2010) α-Hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population. PLoS One 5:e10883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonora E, Cigolini M, Bosello O et al (1984) Lack of effect of intravenous metformin on plasma concentrations of glucose, insulin, C-peptide, glucagon and growth hormone in non-diabetic subjects. Curr Med Res Opin 9:47–51

    Article  CAS  PubMed  Google Scholar 

  • Bailey CJ, Wilcock C, Scarpello JH (2008) Metformin and the intestine. Diabetologia 51:1552–1553

    Article  CAS  PubMed  Google Scholar 

  • Sekar S, Chandrasekaran A, Rao U, Sastry TP (2011) Comparison of some of the physicochemical characteristics of type 2 diabetic and normal human bones: a sample study. J Diabetes Complicat 25:187–192

    Article  Google Scholar 

  • DeFronzo RA, Buse JB, Kim T et al (2016) Once-daily delayed release metformin lowers plasma glucose and enhances fasting and postprandial GLP-1 and PYY: results from two randomised trials. Diabetologia 59:1645–1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buse JB, DeFronzo RA, Rosenstock J et al (2016) The primary glucose-lowering effect of metformin resides in the gut, not the circulation: results from short-term pharmacokinetic and 12-week dose-ranging studies. Diabetes Care 39:198–205

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Esteve E, Tremaroli V et al (2017) Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med. https://doi.org/10.1038/nm.4345

  • Gong L, Goswami S, Giacomini KM, Altman RB, Klein TE (2012) Metformin pathways: pharmacokinetic and pharmacodynamics. Pharmacogenet Genomics 22(11):820–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dresser MJ, Xiao G, Leabman MK, Gray AT, Giacomini KM (2002) Interactions of N-tetraalkylammonium compounds and biguanides with a human renal organic cation tranporter (hOCT2). Pharm Res 19:1244–1247

    Article  CAS  PubMed  Google Scholar 

  • Kimura N, Masuda S, Tanihara Y et al (2005) Metformin is a superior substrate for renal organic cation tranporter OCT2 rather than hepatic OCT1. Drug Metab Pharmacokinet 20:379–386

    Article  CAS  PubMed  Google Scholar 

  • Urakami Y, Nakamura N, Takahashi K et al (1999) Gender differences in expression of organic cation transporter OCT2 in rat kidney. FEBS Lett 461:339–342

    Article  CAS  PubMed  Google Scholar 

  • Urakami Y, Okuda M, Saito H, Inui K (2000) Hormonal regulation of organic cation transporter OCT2 expression in rat kidney. FEBS Lett 473:173–176

    Article  CAS  PubMed  Google Scholar 

  • Asaka J, Terada T, Okuda M, Katsura T, Inui K (2006) Androgen receptor is responsible for rat organic cation transporter 2 gene regulation but not for rOCT1 and rOCT3. Pharm Res 23:697–704

    Article  CAS  PubMed  Google Scholar 

  • Leabman MK, Giacomini KM (2003) Estimating the contribution of genes and environment to variation in renal drug clearance. Pharmacogenetics 13:581–584

    Article  CAS  PubMed  Google Scholar 

  • Mofo Mato EP, Guewo-Fokeng M, Essop MF, Oroma Owira PM (2018) Genetic polymorphisms of organic cation transporter 1 (OCT1) and responses to metformin therapy in individuals with type 2 diabetes: a systematic review. Medicine 97:27e11349

    Article  CAS  Google Scholar 

  • Barengolts E, Green SJ, Eisenberg Y et al (2018) Gut microbiota varies by opioid use, circulating leptin and oxytocin in African American men with diabetes and high burden of chronic disease. PLoS One 13(3):e0194171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burton JH, Johnson M, Johnson J, Hsia DS, Greenway FL, Heiman ML (2015) Addition of a gastrointestinal microbiome modulator to metformin improves metformin tolerance and fasting glucose levels. J Diabetes Sci Technol 9:808–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunkwall L, Orho-Melander M (2017) The gut microbiome as a target for prevention and treatment of hyperglycaemia in type 2 diabetes: from current human evidence to future possibilities. Diabetologia 60:943–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCreight LJ, Bailey CJ, Pearson ER (2016) Metformin and the gastrointestinal tract. Diabetologia 59:426–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henry RR, Frias JP, Walsh B et al (2018) Improved glycemic control with minimal systemic metformin exposure: effects of metformin delayed-release (metformin DR) targeting the lower bowel over 16 weeks in a randomized trial in subjects with type 2 diabetes. PLoS One 13(9):e0203946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duca FA, Cote CD, Rasmussen BA et al (2015) Metformin activates a duodenal AMPK-dependent pathway to lower hepatic glucose production in rats. Nat Med 21:506–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duong JK, Furlong TJ, Roberts DM et al (2013) The role of metformin in metformin-associated lactic acidosis (MALA): case series and formulation of a model of pathogenesis. Drug Saf 36(9):733–746

    Article  CAS  PubMed  Google Scholar 

  • Maideen NMP, Jumale A, Balasubramaniam R (2017) Drug interactions of metformin involving drug transporter proteins. Adv Pharm Bull 7(4):501–505

    Article  CAS  Google Scholar 

  • Li Q, Liu F, Zheng TS, Tang JL, Lu HJ, Jia WP (2010) SLC22A2 gene 808 G/T variant is related to plasma lactate concentration in Chinese type 2 diabetics treated with metformin. Acta Pharmacol Sin 31:184–190

    Article  CAS  PubMed  PubMed Central  Google Scholar