doi.org

Protein variety and functional diversity: Swiss-Prot annotation in its biological context

  • ️Fri May 13 2005

[1] A. Bairoch; B. Boeckmann; S. Ferro; E. Gasteiger Swiss-Prot: juggling between evolution and stability, Brief. Bioinform., Volume 5 (2004), pp. 39-55

[2] A. Bairoch; R. Apweiler; C.H. Wu; W.C. Barker; B. Boeckmann; S. Ferro; E. Gasteiger; H. Huang; R. Lopez; M. Magrane; M.J. Martin; D.A. Natale; C. O'Donovan; N. Redaschi; L.S. Yeh The Universal Protein Resource (UniProt), Nucleic Acids Res., Volume 33 (2005), p. D154-D159

[3] B. Boeckmann; A. Bairoch; R. Apweiler; M.C. Blatter; A. Estreicher; E. Gasteiger; M.J. Martin; K. Michoud; C. O'Donovan; I. Phan; S. Pilbout; M. Schneider The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003, Nucleic Acids Res., Volume 31 (2003), pp. 365-370

[4] E. Gasteiger; A. Gattiker; C. Hoogland; I. Ivanyi; R.D. Appel; A. Bairoch ExPASy: The proteomics server for in-depth protein knowledge and analysis, Nucleic Acids Res., Volume 31 (2003), pp. 3784-3788

[5] G.S. Shadel; D.A. Clayton Mitochondrial DNA maintenance in vertebrates, Annu. Rev. Biochem., Volume 66 (1997), pp. 409-435

[6] A.J. Bendich Circular chloroplast chromosomes: the grand illusion, Plant Cell, Volume 16 (2004), pp. 1661-1666

[7] S. Baginsky; W. Gruissem Chloroplast proteomics: potentials and challenges, J. Exp. Bot., Volume 55 (2004), pp. 1213-1220

[8] A. Sakai; H. Takano; T. Kuroiwa Organelle nuclei in higher plants: structure, composition, function, and evolution, Int. Rev. Cytol., Volume 238 (2004), pp. 59-118

[9] D.B. Stern; M.R. Hanson; A. Barkan Genetics and genomics of chloroplast biogenesis: maize as a model system, Trends Plant Sci., Volume 9 (2004), pp. 293-301

[10] V.L. Stirewalt; C.B. Michalowski; W. Loeffelhardt; H.J. Bohnert; D.A. Bryant Nucleotide sequence of the cyanelle DNA from Cyanophora paradoxa, Plant Mol. Biol. Rep., Volume 13 (1995), pp. 327-332

[11] T.A. Ayoubi; W.J. Van De Ven Regulation of gene expression by alternative promoters, FASEB J., Volume 10 (1996), pp. 453-460

[12] N.J. Proudfoot; A. Furger; M.J. Dye Integrating mRNA processing with transcription, Cell, Volume 108 (2002), pp. 501-512

[13] M. Deutsch; M. Long Intron-exon structures of eukaryotic model organisms, Nucleic Acids Res., Volume 27 (1999), pp. 3219-3228

[14] A.R. Kornblihtt; M. de la Mata; J.P. Federa; M.J. Munoz; G. Nogues Multiple links between transcription and splicing, RNA, Volume 10 (2004), pp. 1489-1498

[15] R. Reed Coupling transcription, splicing and mRNA export, Curr. Opin. Cell Biol., Volume 15 (2003), pp. 326-331

[16] P.J. Lopez; B. Seraphin YIDB: the Yeast intron database, Nucleic Acids Res., Volume 28 (2000), pp. 85-86

[17] M.L. Bang; T. Centner; F. Fornoff; A.J. Geach; M. Gotthardt; M. McNabb; C.C. Witt; D. Labeit; C.C. Gregorio; H. Granzier; S. Labeit The complete gene sequence of titin, expression of an unusual approximately 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system, Circ. Res., Volume 89 (2001), pp. 1065-1072

[18] G. Ast How did alternative splicing evolve?, Nat. Rev. Genet., Volume 5 (2004), pp. 773-782

[19] D. Brett; H. Pospinil; J. Valcartel; J. Reich; P. Bork Alternative splicing and genome complexity, Nat. Genet., Volume 30 (2002), pp. 29-30

[20] S. Boue; I. Letunic; P. Bork Alternative splicing and evolution, Bioessays, Volume 25 (2003), pp. 1031-1034

[21] L. Cartegni; S.L. Chew; A.R. Krainer Listening to silence and understanding nonsense: exonic mutations that affect splicing, Nat. Rev., Volume 3 (2002), pp. 285-298

[22] B. Modrek; A. Resch; C. Grasso; C. Lee Genome-wide detection of alternative splicing in expressed sequences of human genes, Nucleic Acids Res., Volume 29 (2001), pp. 2850-2859

[23] D. Schmucker; J.C. Clemens; H. Shu; C.A. Worby; J. Xiao; M. Muda; J.E. Dixon; S.L. Zipursky Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity, Cell, Volume 101 (2000), pp. 671-684

[24] C. Caldas; C.W. So; A. MacGregor; A.M. Ford; B. McDonald; L.C. Chan; L.M. Wiedemann Exon scrambling of MLL transcripts occur commonly and mimic partial genomic duplication of the gene, Gene, Volume 208 (1998), pp. 167-176

[25] C. Finta; P.G. Zaphiropoulos Intergenic mRNA molecules resulting from trans-splicing, J. Biol. Chem., Volume 277 (2002), pp. 5882-5890

[26] S. Mass; A. Rich Changing genetic information through RNA editing, Bioessays, Volume 22 (2000), pp. 790-802

[27] M. Schaub; W. Keller RNA editing by adenosine deaminases generates RNA and protein diversity, Biochimie, Volume 84 (2002), pp. 791-803

[28] D.A. Campbell; S. Thomas; N.R. Sturm Transcription in kinetoplastid protozoa: why be normal?, Microbes Infect., Volume 5 (2003), pp. 1231-1240

[29] P. Vinciguerra; F. Stutz mRNA export: an assembly line from genes to nuclear pores, Curr. Opin. Cell Biol., Volume 16 (2004), pp. 285-292

[30] T.V. Pestova; I.B. Lomakin; J.H. Lee; S.K. Choi; T.E. Dever; C.U. Hellen The joining of ribosomal subunits in eukaryotes requires eIF5B, Nature, Volume 403 (2000), pp. 332-335

[31] L.D. Kapp; J.R. Lorsch The molecular mechanics of eukaryotic translation, Annu. Rev. Biochem., Volume 73 (2004), pp. 657-704

[32] M. Kozak Recognition of AUG and alternative initiator codons is augmented by G in position +4 but is not generally affected by the nucleotides in positions +5 and +6, EMBO J., Volume 16 (1997), pp. 2482-2492

[33] N.N. Hashimoto; L.S. Carnevalli; B.A. Castilho Translation initiation at non-AUG codons mediated by weakened association of eukaryotic initiation factor (eIF) 2 subunits, Biochem. J., Volume 367 (2002), pp. 359-368

[34] S. Malarkannan; T. Horng; P.P. Shih; S. Schwab; N. Shastri Presentation of out-of-frame peptide/MHC class I complexes by a novel translation initiation mechanism, Immunity, Volume 10 (1999), pp. 681-690

[35] C. Touriol; S. Bornes; S. Bonnal; S. Audigier; H. Prats; A.C. Prats; S. Vagner Generation of protein isoform diversity by alternative initiation of translation at non-AUG codons, Biol. Cell., Volume 95 (2003), pp. 169-178

[36] O. Namy; J.P. Rousset; S. Napthine; I. Brierley Reprogrammed genetic decoding in cellular gene expression, Mol. Cell., Volume 13 (2004), pp. 157-168

[37] P.V. Baranov; R.F. Gesteland; J.F. Atkins Recoding: translational bifurcations in gene expression, Gene, Volume 286 (2002), pp. 187-201

[38] I.P. Ivanov; S. Matsufuji; Y. Murakami; R.F. Gesteland; J.F. Atkins Conservation of polyamine regulation by translational frameshifting from yeast to mammals, EMBO J., Volume 19 (2000), pp. 1907-1917

[39] K. Shigemoto; J. Brennan; E. Walls; C.J. Watson; D. Stott; P.W. Rigby; A.D. Reith Identification and characterisation of a developmentally regulated mammalian gene that utilises −1 programmed ribosomal frameshifting, Nucleic Acids Res., Volume 29 (2001), pp. 4079-4088

[40] D.L. Hatfield; V.N. Gladyshev How selenium has altered our understanding of the genetic code, Mol. Cell. Biol., Volume 22 (2002), pp. 3565-3576

[41] B. Cobucci-Ponzano; M. Rossi; M. Moracci Recoding in archaea, Mol. Microbiol., Volume 55 (2005), pp. 339-348

[42] P. Schimmel; K. Beebe Molecular biology: genetic code seizes pyrrolysine, Nature, Volume 431 (2004), pp. 257-258

[43] R.A. Bradshaw; W.W. Brickey; K.W. Walker N-terminal processing: the methionine aminopeptidase and N alpha-acetyl transferase families, Trends Biochem. Sci., Volume 23 (1998), pp. 263-267

[44] B.B. Quimby; A.H. Corbett Nuclear transport mechanisms, Cell. Mol. Life Sci., Volume 58 (2001), pp. 1766-1773

[45] N. Wiedemann; A.E. Frazier; N. Pfanner The protein import machinery of mitochondria, J. Biol. Chem., Volume 279 (2004), pp. 14473-14476

[46] C.M. Koehler New developments in mitochondrial assembly, Annu. Rev. Cell Dev. Biol., Volume 20 (2004), pp. 309-335

[47] A. Chacinska; S. Pfannschmidt; N. Wiedemann; V. Kozjak; L.K. Sanjuan Szklarz; A. Schulze-Specking; K.N. Truscott; B. Guiard; C. Meisinger; N. Pfanner Essential role of Mia40 in import and assembly of mitochondrial intermembrane space proteins, EMBO J., Volume 23 (2004), pp. 3735-3746

[48] R.A. Stuart Insertion of proteins into the inner membrane of mitochondria: the role of the Oxa1 complex, Biochim. Biophys. Acta, Volume 1592 (2002), pp. 79-87

[49] M. Preuss; M. Ott; S. Funes; J. Luirink; J.M. Herrmann Evolution of mitochondrial oxa proteins from bacterial YidC, inherited and acquired functions of a conserved protein insertion machinery, J. Biol. Chem., Volume 280 (2005), pp. 13004-13011

[50] A. Nada; J. Soll Inner envelope protein 32 is imported into chloroplasts by a novel pathway, J. Cell Sci., Volume 117 (2004), pp. 3975-3982

[51] J. Soll; E. Schleiff Protein import into chloroplasts, Nat. Rev. Mol. Cell. Biol., Volume 5 (2004), pp. 198-208

[52] D. Schuenemann Structure and function of the chloroplast signal recognition particle, Curr. Genet., Volume 44 (2004), pp. 295-304

[53] C. Robinson; A. Bolhuis Tat-dependent protein targeting in prokaryotes and chloroplasts, Biochim. Biophys. Acta, Volume 1694 (2004), pp. 135-147

[54] R.J. Keenan; D.M. Freymann; R.M. Stroud; P. Walter The signal recognition particle, Annu. Rev. Biochem., Volume 70 (2001), pp. 755-775

[55] T.A. Rapoport; V. Goder; S.U. Heinrich; K.E.S. Matlack Membrane-protein integration and the role of the translocation channel, Trends Cell Biol., Volume 14 (2004), pp. 568-575

[56] B. Martoglio; B. Dobberstein Signal sequences: more than just greasy peptides, Trends Cell Biol., Volume 8 (1998), pp. 410-415

[57] W. Schliebs; W.-H. Kunau Peroxisome membrane biogenesis: the stage is set, Curr. Biol., Volume 14 (2004), p. R397-R399

[58] S.J. Gould; C.S. Collins Peroxisomal protein import: is it really that complex?, Nat. Rev. Mol. Cell Biol., Volume 3 (2002), pp. 382-389

[59] P.B. Lazarow Peroxisome biogenesis: advances and conundrums, Curr. Opin. Cell Biol., Volume 15 (2003), pp. 489-497

[60] J. Imai; H. Yashiroda; M. Maruya; I. Yahara; K. Tanaka Proteasomes and molecular chaperones: cellular machinery responsible for folding and destruction of unfolded proteins, Cell Cycle, Volume 2 (2003), pp. 585-590

[61] A. Komeili; E.K. O'Shea New perspectives on nuclear transport, Annu. Rev. Genet., Volume 35 (2001), pp. 341-364

[62] R. Schekman; L. Orci Coat proteins and vesicle budding, Science, Volume 271 (1996), pp. 1526-1533

[63] J. Lippincott-Schwartz; T.H. Roberts; K. Hirschberg Secretory protein trafficking and organelle dynamics in living cells, Annu. Rev. Cell Dev. Biol., Volume 16 (2000), pp. 557-589

[64] M. Sinensky Recent advances in the study of prenylated proteins, Biochim. Biophys. Acta, Volume 1529 (2000), pp. 203-209

[65] R.E. Dalbey; A. Kuhn Evolutionarily related insertion pathways of bacterial, mitochondrial, and thylakoid membrane proteins, Annu. Rev. Cell Dev. Biol., Volume 16 (2000), pp. 51-87

[66] C.R. Sanders; J.K. Myers Disease-related misassembly of membrane proteins, Annu. Rev. Biophys. Biomol. Struct., Volume 33 (2004), pp. 25-51

[67] T.R. Kau; J.C. Way; P.A. Silver Nuclear transport and cancer: from mechanism to intervention, Nat. Rev. Cancer, Volume 4 (2004), pp. 106-117

[68] C.B. Anfinsen Principles that govern the folding of protein chains, Science, Volume 181 (1973), pp. 223-230

[69] C.M. Dobson Principles of protein folding, misfolding and aggregation, Semin. Cell & Dev. Biol., Volume 15 (2004), pp. 3-16

[70] F.U. Hartl; J. Martin Molecular chaperones in cellular protein folding, Curr. Opin. Struct. Biol., Volume 5 (1995), pp. 92-102

[71] A. Sali; E. Shakhnovich; M. Karplus How does a protein fold?, Nature, Volume 69 (1994), pp. 248-251

[72] Y. Zhou; M. Karplus Interpreting the folding kinetics of helical proteins, Nature, Volume 401 (1999), pp. 400-403

[73] C.A. Orengo; F.M. Pearl; J.E. Bray; A.E. Todd; A.C. Martin; L. Lo Conte; J.M. Thornton The CATH Database provides insights into protein structure/function relationships, Nucleic Acids Res., Volume 27 (1999), pp. 275-279

[74] L. Lo Conte; B. Ailey; T.J. Hubbard; S.E. Brenner; A.G. Murzin; C. Chothia SCOP: a structural classification of proteins database, Nucleic Acids Res., Volume 28 (2000), pp. 257-259

[75] M.A. Andrade; C. Perez-Iratxeta; C.P. Ponting Protein repeats: structures, functions and evolution, J. Struct. Biol., Volume 134 (2001), pp. 117-131

[76] M. Shen; F.P. Davis; A. Sali The optimal size of a globular protein domain: A simple sphere-packing model, Chem. Phys. Lett., Volume 405 (2005), pp. 224-228

[77] R.R. Copley; I. Letunic; P. Bork Genome and protein evolution in eukaryotes, Curr. Opin. Chem. Biol., Volume 6 (2002), pp. 39-45

[78] L. Patthy Genome evolution and the evolution of exon-shuffling – a review, Gene, Volume 238 (1999), pp. 103-114

[79] E.V. Kriventseva; I. Koch; R. Apweiler; M. Vingron; P. Bork; M.S. Gelfand; S. Sunyaev Increase of functional diversity by alternative splicing, Trends Genet., Volume 19 (2003), pp. 124-128

[80] J.S. Garavelli The RESID Database of Protein Modifications as a resource and annotation tool, Proteomics, Volume 4 (2004), pp. 1527-1533

[81] S.C. Huber; S.C. Hardin Numerous posttranslational modifications provide opportunities for the intricate regulation of metabolic enzymes at multiple levels, Curr. Opin. Plant Biol., Volume 7 (2004), pp. 318-322

[82] J. Seo; K.J. Lee Post-translational modifications and their biological functions: proteomic analysis and systematic approaches, J. Biochem. Mol. Biol., Volume 37 (2004), pp. 35-44

[83] C. Brahimi-Horn; N. Mazure; J. Pouyssegur Signalling via the hypoxia-inducible factor-1alpha requires multiple posttranslational modifications, Cell Signal, Volume 17 (2005), pp. 1-9

[84] T.L. Tootle; I. Rebay Post-translational modifications influence transcription factor activity: a view from the ETS superfamily, Bioessays, Volume 27 (2005), pp. 285-298

[85] C.L. Peterson; M.A. Laniel Histones and histone modifications, Curr. Biol., Volume 14 (2004), p. R546-R551

[86] R.N. Freiman; R. Tjian Regulating the regulators: lysine modifications make their mark, Cell, Volume 112 (2003), pp. 11-17

[87] J.U. Baenziger A major step on the road to understanding a unique posttranslational modification and its role in a genetic disease, Cell, Volume 113 (2003), pp. 421-422

[88] C.X. Gong; F. Liu; I. Grundke-Iqbal; K. Iqbal Post-translational modifications of tau protein in Alzheimer's disease, J. Neural. Transm., Volume 112 (2005), pp. 813-838

[89] S.M. Anderton Post-translational modifications of self antigens: implications for autoimmunity, Curr. Opin. Immunol., Volume 16 (2004), pp. 753-758

[90] C. Schoneich, Mass spectrometry in aging research, Mass Spectrom. Rev., in press

[91] T. Marquardt; J. Denecke Congenital disorders of glycosylation: review of their molecular bases, clinical presentations and specific therapies, Eur. J. Pediatr., Volume 162 (2003), pp. 359-379

[92] P.A. Cloos; S. Christgau Post-translational modifications of proteins: implications for aging, antigen recognition, and autoimmunity, Biogerontology, Volume 5 (2004), pp. 139-158

[93] B. Alberts; A. Johnson; J. Lewis; M. Raff; K. Roberts; P. Walter Molecular Biology of the Cell, Garland, New York, 2002

[94] R.S. Gupte; Y. Weng; L. Liu; M.Y. Lee The second subunit of the replication factor C complex (RFC40) and the regulatory subunit (RIalpha) of protein kinase A form a protein complex promoting cell survival, Cell. Cycle, Volume 4 (2005), pp. 323-329

[95] P. Aloy; R.B. Russell The third dimension for protein interactions and complexes, Trends Biochem. Sci., Volume 27 (2002), pp. 633-638

[96] A.M. Edwards; B. Kus; R. Jansen; D. Greenbaum; J. Greenblatt; M. Gerstein Bridging structural biology and genomics: assessing protein interaction data with known complexes, Trends Genet., Volume 18 (2002), pp. 529-536

[97] S.J. Wodak; J. Janin Structural basis of macromolecular recognition, Adv. Protein Chem., Volume 61 (2002), pp. 9-73

[98] M.M. Yusupov; G.Z. Yusupova; A. Baucom; K. Lieberman; T.N. Earnest; J.H. Cate; H.F. Noller Crystal structure of the ribosome at 5.5 A resolution, Science, Volume 292 (2001), pp. 883-896

[99] P. Cramer; D.A. Bushnell; R.D. Kornberg Structural basis of transcription: RNA polymerase II at 2.8-angstrom resolution, Science, Volume 292 (2001), pp. 1863-1876

[100] R.C. Robinson; K. Turbedsky; D.A. Kaiser; J.B. Marchand; H.N. Higgs; S. Choe; T.D. Pollard Crystal structure of Arp2/3 complex, Science, Volume 294 (2001), pp. 1679-1684

[101] L.M. Machesky; R.H. Insall Scar1 and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex, Curr. Biol., Volume 8 (1988), pp. 1347-1356

[102] R.D. Mullins; W.F. Stafford; T.D. Pollard Structure, subunit topology, and actin-binding activity of the Arp2/3 complex from Acanthamoeba, J. Cell Biol., Volume 136 (1997), pp. 331-343

[103] M. Unno; T. Mizushima; Y. Morimoto; Y. Tomisugi; K. Tanaka; N. Yasuoka; T. Tsukihara The structure of the mammalian 20S proteasome at 2.75-Å resolution, Structure, Volume 10 (2002), pp. 609-618

[104] R.C. Liddington Structural basis of protein–protein interactions, Methods Mol. Biol., Volume 261 (2004), pp. 3-14

[105] R. Roskoski Src protein-tyrosine kinase structure and regulation, Biochem. Biophys. Res. Commun., Volume 324 (2004), pp. 1155-1164

[106] P. Uetz; L. Giot; G. Cagney; T.A. Mansfield; R.S. Judson; J.R. Knight; D. Lockshon; V. Narayan; M. Srinivasan; P. Pochart A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae, Nature, Volume 403 (2000), pp. 623-627

[107] T. Ito; T. Chiba; R. Ozawa; M. Yoshida; M. Hattori; Y. Sakaki A comprehensive two-hybrid analysis to explore the yeast protein interactome, Proc. Natl Acad. Sci. USA, Volume 98 (2001), pp. 4569-4574

[108] J.C. Rain; L. Selig; H. De Reuse; V. Battaglia; C. Reverdy; S. Simon; G. Lenzen; F. Petel; J. Wojcik; V. Schachter; Y. Chemama; A. Labigne; P. Legrain The protein–protein interaction map of Helicobacter pylori, Nature, Volume 409 (2001), pp. 211-215

[109] L. Giot; J.S. Bader; C. Brouwer; A. Chaudhuri; B. Kuang; Y. Li; Y.L. Hao; C.E. Ooi; B. Godwin; E. Vitols; G. Vijayadamodar; P. Pochart; H. Machineni; M. Welsh; Y. Kong; B. Zerhusen; R. Malcolm; Z. Varrone; A. Collis; M. Minto; S. Burgess; L. McDaniel; E. Stimpson; F. Spriggs; J. Williams; K. Neurath; N. Ioime; M. Agee; E. Voss; K. Furtak; R. Renzulli; N. Aanensen; S. Carrolla; E. Bickelhaupt; Y. Lazovatsky; A. DaSilva; J. Zhong; C.A. Stanyon; R.L. Finley; K.P. White; M. Braverman; T. Jarvie; S. Gold; M. Leach; J. Knight; R.A. Shimkets; M.P. McKenna; J. Chant; J.M. Rothberg A protein interaction map of Drosophila melanogaster, Science, Volume 302 (2003), pp. 1727-1736

[110] S. Li; C.M. Armstrong; N. Bertin; H. Ge; S. Milstein; M. Boxem; P.O. Vidalain; J.D. Han; A. Chesneau; T. Hao; D.S. Goldberg; N. Li; M. Martinez; J.-F. Rual; P. Lamesch; L. Xu; M. Tewari; S.L. Wong; L.V. Zhang; G.F. Berriz; L. Jacotot; P. Vaglio; J. Reboul; T. Hirozane-Kishikawa; Q. Li; H.W. Gabel; A. Elewa; B. Baumgartner; D.J. Rose; H. Yu; S. Bosak; R. Sequerra; A. Fraser; S.E. Mango; W.M. Saxton; S. Strome; S. Van Den Heuvel; F. Piano; J. Vandenhaute; C. Sardet; M. Gerstein; L. Doucette-Stamm; K.C. Gunsalus; J.W. Harper; M.W. Cusick; F.P. Roth; D.E. Hill; M. Vidal A map of the interactome network of the metazoan C. elegans, Science, Volume 303 (2004), pp. 540-543

[111] C. von Mering; R. Krause; B. Snel; M. Cornell; S.G. Oliver; S. Fields; P. Bork Comparative assessment of large-scale data sets of protein–protein interactions, Nature, Volume 417 (2002), pp. 399-403

[112] P. Aloy; R.B. Russell Potential artefacts in protein-interaction networks, FEBS Lett., Volume 530 (2002), pp. 253-254

[113] C.M. Deane; L. Salwinski; I. Xenarios; D. Eisenberg Protein interactions: two methods for assessment of the reliability of high throughput observations, Mol. Cell Proteomics, Volume 1 (2002), pp. 349-356

[114] G.D. Bader; C.W. Hogue Analyzing yeast protein–protein interaction data obtained from different sources, Nat. Biotechnol., Volume 20 (2002), pp. 991-997

[115] E. Sprinzak; S. Sattath; H. Margalit How reliable are experimental protein–protein interaction data?, J. Mol. Biol., Volume 327 (2003), pp. 919-923

[116] Y. Ho; A. Gruhler; A. Heilbut; G.D. Bader; L. Moore; S.L. Adams; A. Millar; P. Taylor; K. Bennett; K. Boutilier; L. Yang; C. Wolting; I. Donaldson; S. Schandorff; J. Shewnarane; M. Vo; J. Taggart; M. Goudreault; B. Muskat; C. Alfarano; D. Dewar; Z. Lin; K. Michalickova; A.R. Willems; H. Sassi; P.A. Nielsen; K.J. Rasmussen; J.R. Andersen; L.E. Johansen; L.H. Hansen; H. Jespersen; A. Podtelejnikov; E. Nielsen; J. Crawford; V. Poulsen; B.D. Sorensen; J. Matthiesen; R.C. Hendrickson; F. Gleeson; T. Pawson; M.F. Moran; D. Durocher; M. Mann; C.W. Hogue; D. Figeys; M. Tyers Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry, Nature, Volume 415 (2002), pp. 180-183

[117] A.C. Gavin; M. Bosche; R. Krause; P. Grandi; M. Marzioch; A. Bauer; J. Schultz; J.M. Rick; A.M. Michon; C.M. Cruciat; M. Remor; C. Hofert; M. Schelder; M. Brajenovic; H. Ruffner; A. Merino; K. Klein; M. Hudak; D. Dickson; T. Rudi; V. Gnau; A. Bauch; S. Bastuck; B. Huhse; C. Leutwein; M.A. Heurtier; R.R. Copley; A. Edelmann; E. Querfurth; V. Rybin; G. Drewes; M. Raida; T. Bouwmeester; P. Bork; B. Seraphin; B. Kuster; G. Neubauer; G. Superti-Furga Functional organization of the yeast proteome by systematic analysis of protein complexes, Nature, Volume 415 (2002), pp. 141-147

[118] B. Schwikowski; P. Uetz; S. Fields A network of protein–protein interactions in yeast, Nat. Biotechnol., Volume 18 (2000), pp. 1257-1261

[119] A.J. Walhout; S.J. Boulton; M. Vidal Yeast two-hybrid systems and protein interaction mapping projects for yeast and worm, Yeast, Volume 17 (2000), pp. 88-94

[120] A. Sali; R. Glaeser; T. Earnest; W. Baumeister From words to literature in structural proteomics, Nature, Volume 422 (2003), pp. 216-225

[121] H. Hermjakob; L. Montecchi-Palazzi; C. Lewington; S. Mudali; S. Kerrien; S. Orchard; M. Vingron; B. Roechert; P. Roepstorff; A. Valencia; H. Margalit; J. Armstrong; A. Bairoch; G. Cesareni; D. Sherman IntAct: an open source molecular interaction database, Nucleic Acids Res., Volume 32 (2004), p. D452-D455

[122] The Human Gene Mutation Database http://archive.uwcm.ac.uk/uwcm/mg/hgmd0.html

[123] S.E. Antonarakis; D.N. Cooper Mutations in human genetic disease (D.N. Cooper, ed.), Encyclopedia of the Human Genome, Nature Publishing Group, London, 2003, pp. 227-253

[124] B. Schmidt; T. Selmer; A. Ingendoh; K. von Figura A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency, Cell, Volume 28 (1995), pp. 271-278

[125] T. Dierks; B. Schmidt; L.V. Borissenko; J. Peng; A. Preusser; M. Mariappan; K. von Figura Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(alpha)-formylglycine generating enzyme, Cell, Volume 113 (2003), pp. 435-444

[126] M.P. Cosma; S. Pepe; I. Annunziata; R.F. Newbold; M. Grompe; G. Parenti; A. Ballabio The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases, Cell, Volume 113 (2003), pp. 445-456

[127] P. Rutland; L.J. Pulleyn; W. Reardon; M. Baraitser; R. Hayward; B. Jones; S. Malcolm; R.M. Winter; M. Oldridge; S.F. Slaney; M.D. Poole; A.O.M. Wilkie Identical mutations in the FGFR2 gene cause both Pfeiffer and Crouzon syndrome phenotypes, Nat. Genet., Volume 9 (1995), pp. 173-176

[128] N. Katsanis; S.J. Ansley; J.L. Badano; E.R. Eichers; R.A. Lewis; B.E. Hoskins; P.J. Scambler; W.S. Davidson; P.L. Beales; J.R. Lupski Triallelic inheritance in Bardet–Biedl syndrome, a Mendelian recessive disorder, Science, Volume 293 (2001), pp. 2256-2259

[129] Online Mendelian Inheritance in Man, OMIM (TM), McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University (Baltimore, MD) and National Center for Biotechnology Information, National Library of Medicine (Bethesda, MD), 2000, http://www.ncbi.nlm.nih.gov/omim/