cambridge.org

Neural reuse: A fundamental organizational principle of the brain | Behavioral and Brain Sciences | Cambridge Core

  • ️Sat Feb 22 2025

References

Anderson, J. R. (2007) How can the human mind occur in the physical universe? Oxford University Press.CrossRefGoogle Scholar

Anderson, J. R., Qin, Y., Junk, K. -J. & Carter, C. S. (2007) Information processing modules and their relative modality specificity. Cognitive Psychology 57:185217.CrossRefGoogle Scholar

Anderson, M. L. (2003) Embodied cognition: A field guide. Artificial Intelligence 149(1):91103.CrossRefGoogle Scholar

Anderson, M. L. (2007a) Evolution of cognitive function via redeployment of brain areas. The Neuroscientist 13:1321.CrossRefGoogle ScholarPubMed

Anderson, M. L. (2007b) Massive redeployment, exaptation, and the functional integration of cognitive operations. Synthese 159(3):329–45.CrossRefGoogle Scholar

Anderson, M. L. (2007c) The massive redeployment hypothesis and the functional topography of the brain. Philosophical Psychology 21(2):143–74.CrossRefGoogle Scholar

Anderson, M. L. (2008a) Circuit sharing and the implementation of intelligent systems. Connection Science 20(4):239–51.CrossRefGoogle Scholar

Anderson, M. L. (2008c) On the grounds of x-grounded cognition. In: The Elsevier handbook of cognitive science: An embodied approach, ed. Calvo, P. & Gomila, T., pp. 423–35. Elsevier.CrossRefGoogle Scholar

Anderson, M. L., Brumbaugh, J. & Şuben, A. (2010) Investigating functional cooperation in the human brain using simple graph-theoretic methods. In: Computational neuroscience, ed. Chaovalitwongse, A., Pardalos, P. M. & Xanthopoulos, P., pp. 3142. Springer.CrossRefGoogle Scholar

Anderson, M. L. & Oates, T. (2010) A critique of multi-voxel pattern analysis. Proceedings of the 32nd Annual Meeting of the Cognitive Science Society, ed. Ohlsson, S. and Catrambone, R., pp. 1511–16. Cognitive Science Society.Google Scholar

Anderson, M. L. & Silberstein, M. D. (submitted) Constraints on localization as an explanatory strategy in the biological sciences.Google Scholar

Andres, M., Seron, X. & Oliver, E. (2007) Contribution of hand motor circuits to counting. Journal of Cognitive Neuroscience 19:563–76.CrossRefGoogle ScholarPubMed

Atallah, H. E., Frank, M. J. & O'Reilly, R. C. (2004) Hippocampus, cortex, and basal ganglia: Insights from computational models of complementary learning systems. Neurobiology of Learning and Memory 82(3):253–67.CrossRefGoogle ScholarPubMed

Awh, E., Jonides, J., Smith, E. E., Schumacher, E. H., Koeppe, R. A. & Katz, S. (1996) Dissociation of storage and rehearsal in verbal working memory: Evidence from positron emission tomography. Psychological Science 7:2531.CrossRefGoogle Scholar

Baddeley, A. D. (1995) Working memory. In: The cognitive neurosciences, ed. Gazzaniga, M. S., pp. 755–64. MIT Press.Google Scholar

Baddeley, A. D. & Hitch, G. (1974) Working memory. In: The psychology of learning and motivation, ed. Bower, G. H., pp. 647–67. Erlbaum.Google Scholar

Baddeley, A. D. & Hitch, G. (1994) Developments in the concept of working memory. Neuropsychology 8:485–93.CrossRefGoogle Scholar

Barabási, A.-L., Albert, R. & Jeong, H. (2000) Scale-free characteristics of random networks: The topology of the World Wide Web. Physica A 281:6977.CrossRefGoogle Scholar

Barkow, J. H., Cosmides, L. & Tooby, J., eds. (1992) The adapted mind: Evolutionary psychology and the generation of culture. Oxford University Press.CrossRefGoogle Scholar

Barrett, H. C. & Kurzban, R. (2006) Modularity in cognition: Framing the debate. Psychological Review 113(3):628–47.CrossRefGoogle ScholarPubMed

Barsalou, L. W. (1999) Perceptual symbol systems. Behavioral and Brain Sciences 22:577660.Google Scholar

Bechtel, W. (2003) Modules, brain parts, and evolutionary psychology. In: Evolutionary psychology: Alternative approaches, ed. Scher, S. J. & Rauscher, F., pp. 211–27. Kluwer.CrossRefGoogle Scholar

Bechtel, W. & Richardson, R. C. (1993) Discovering complexity: Decomposition and localization as strategies in scientific research. Princeton University Press.Google Scholar

Bechtel, W. & Richardson, R. C. (2010) Discovering complexity: Decomposition and localization as strategies in scientific research, 2nd edition. MIT Press/Bradford Books.CrossRefGoogle Scholar

Behrens, T. E. & Johansen-Berg, H. (2005) Relating connectional architecture to grey matter function using diffusion imaging. Philosophical Transactions of the Royal Society of London, B: Biological Sciences 360:903–11.CrossRefGoogle ScholarPubMed

Bergeron, V. (2007) Anatomical and functional modularity in cognitive science: Shifting the focus. Philosophical Psychology 20(2):175–95.CrossRefGoogle Scholar

Bergeron, V. (2008) Cognitive architecture and the brain: Beyond domain-specific functional specification. Unpublished doctoral dissertation, Department of Philosophy, University of British Columbia. Available at: http://circle.ubc.ca/handle/2429/2711.Google Scholar

Binkofski, F., Amunts, K., Stephan, K. M., Posse, S., Schormann, T., Freund, H.-J., Zilles, K. & Seitz, R. J. (2000) Broca's region subserves imagery of motion: A combined cytoarchitectonic and fMRI study. Human Brain Mapping 11:273–85.3.0.CO;2-0>CrossRefGoogle Scholar

Boroditsky, L. & Ramscar, M. (2002) The roles of body and mind in abstract thought. Psychological Science 13(2):185–88.CrossRefGoogle ScholarPubMed

Boyer, D., Miramontes, O., Ramos-Fernández, G., Mateos, J. L. & Cocho, G. (2004) Modeling the searching behavior of social monkeys. Physica A 342:329–35.CrossRefGoogle Scholar

Brown, C. T., Larry S. Liebovitch, L. S. & Glendon, R. (2007) Lévy flights in dobe ju/'hoansi foraging patterns. Human Ecology 35:129–38.CrossRefGoogle Scholar

Butterworth, B. (1999c) What counts – How every brain is hardwired for math. The Free Press.Google Scholar

Cabeza, R. & Nyberg, L. (2000) Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience 12:147.CrossRefGoogle Scholar

Carruthers, P. (2006) The architecture of the mind: Massive modularity and the flexibility of thought. Clarendon Press/Oxford University Press.CrossRefGoogle Scholar

Casasanto, D. & Dijkstra, K. (2010) Motor action and emotional memory. Cognition 115(1):179–85.Google Scholar

Changizi, M. A. & Shimojo, S. (2005) Character complexity and redundancy in writing systems over human history. Proceedings of the Royal Society of London B: Biological Sciences 272:267–75.Google ScholarPubMed

Changizi, M. A., Zhang, Q., Ye, H. & Shimojo, S. (2006) The structures of letters and symbols throughout human history are selected to match those found in objects in natural scenes. American Naturalist 167:E117–39.CrossRefGoogle ScholarPubMed

Chao, L. L. & Martin, A. (2000) Representation of manipulable man-made objects in the dorsal stream. NeuroImage 12:478–84.CrossRefGoogle ScholarPubMed

Cherniak, C., Mokhtarzada, Z., Rodrigues-Esteban, R. & Changizi, K. (2004) Global optimization of cerebral cortex layout. Proceedings of the National Academy of Sciences USA 101:1081–86.Google Scholar

Clark, A. (1997) Being there: Putting brain, body, and world together again. MIT Press.Google Scholar

Clark, A. (1998) Embodied, situated, and distributed cognition. In: A companion to cognitive science, ed. Bechtel, W. & Graham, G., pp. 506–17. Blackwell.Google Scholar

Coltheart, M. (2001) Assumptions and methods in cognitive neuropsychology. In: The handbook of cognitive neuropsychology, ed. Rapp, B., pp. 321. Psychology Press.Google Scholar

Costafreda, S. G., Fu, C. H. Y., Lee, L., Everitt, B., Brammer, M. J. & David, A. S. (2006) A systematic review and quantitative appraisal of fMRI studies of verbal fluency: Role of the left inferior frontal gyrus. Human Brain Mapping 27(10):799810.CrossRefGoogle ScholarPubMed

Culham, J. C. & Valyear, K. F. (2006) Human parietal cortex in action. Current Opinion in Neurobiology 16:205–12.CrossRefGoogle ScholarPubMed

Dagher, A., Owen, A., Boecker, H. & Brooks, D. (1999) Mapping the network for planning. Brain 122:1973–87.CrossRefGoogle Scholar

Damasio, A. & Tranel, D. (1993) Nouns and verbs are retrieved with differently distributed neural systems. Proceedings of the National Academy of Sciences USA 90:4957–60.Google Scholar

Damasio, H., Grabowski,T. J., Tranel, D., Hichwa, R. D. & Damasio, A. R. (1996) A neural basis for lexical retrieval. Nature 380:499505.CrossRefGoogle ScholarPubMed

Darwin, C. (1862) On the various contrivances by which British and foreign orchids are fertilised by insects, and on the good effects of intercrossing. John Murray.Google Scholar

Decety, J. & Grèzes, J. (1999) Neural mechanisms subserving the perception of human actions. Trends in Cognitive Sciences 3:172–78.CrossRefGoogle ScholarPubMed

Decety, J., Grezes, J., Costes, N., Perani, D., Jeannerod, M., Procyk, E., Grassi, F. & Fazio, F. (1997) Brain activity during observation of actions. Influence of action content and subject's strategy. Brain 120:1763–77.Google Scholar

Decety, J., Sjoholm, H., Ryding, E., Stenberg, G. & Ingvar, D. (1990) The cerebellum participates in cognitive activity: Tomographic measurements of regional cerebral blood flow. Brain Research 535:313–17.Google Scholar

Dehaene, S. (2005) Evolution of human cortical circuits for reading and arithmetic: The “neuronal recycling” hypothesis. In: From monkey brain to human brain, ed. Dehaene, S., Duhamel, J.-R., Hauser, M. D. & Rizolatti, G., pp. 133–57. MIT Press.Google Scholar

Dehaene, S., Bossini, S. & Giraux, P. (1993) The mental representation of parity and numerical magnitude. Journal of Experimental Psychology: General 122:371–96.Google Scholar

Fauconnier, G. & Turner, M. (2002) The way we think: Conceptual blending and the mind's hidden complexities. Basic Books.

Fedorenko, E., Patel, A., Casasanto, D., Winawer, J. & Gibson, T. (2009) Structural integration in language and music: Evidence for a shared system. Memory and Cognition 37(1):19.CrossRefGoogle ScholarPubMed

Feldman, J. & Narayanan, S. (2004) Embodied meaning in a neural theory of language. Brain and Language 89:385–92.Google Scholar

Fodor, J. (1975) The language of thought. Harvard University Press.Google Scholar

Fodor, J. & Pylyshyn, Z. W. (1988) Connectionaism and cognitive architecture: A critical analysis. Cognition 28:371.CrossRefGoogle ScholarPubMed

Fowler, C. A., Rubin, P., Remez, R. E. & Turvey, M. T. (1980) Implications for speech production of a general theory of action. In: Language production, vol. 1: Speech and talk, ed. Butterworth, B., pp. 373420. Academic Press.Google Scholar

Fox, P. T. & Lancaster, J. L. (2002) Mapping context and content: The BrainMap model. Nature Reviews Neuroscience 3:319–21.CrossRefGoogle ScholarPubMed

Fox, P. T., Parsons, L. M. & Lancaster, J. L. (1998) Beyond the single study: Function-location meta-analysis in cognitive neuroimaging. Current Opinions in Neurobiology 8:178–87.CrossRefGoogle ScholarPubMed

Fries, R. C. (2006) Reliable design of medical devices. CRC Press.Google Scholar

Gallese, V. (2003) A neuroscientific grasp of concepts: From control to representation. Philosophical Transactions of the Royal Society London, B: Biological Sciences 358(1435):1231–40.CrossRefGoogle ScholarPubMed

Gallese, V. (2008) Mirror neurons and the social nature of language: The neural exploitation hypothesis. Social Neuroscience 3 (3–4):317–33.Google Scholar

Gallese, V., Fadiga, L., Fogassi, L. & Rizzolatti, G. (1996) Action recognition in the premotor cortex. Brain 119:593609.CrossRefGoogle ScholarPubMed

Gallese, V. & Goldman, A. (1998) Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences 2(12):493501.CrossRefGoogle ScholarPubMed

Gallese, V. & Lakoff, G. (2005) The brain's concepts: The role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology 22 (3–4):455–79.Google Scholar

Gauthier, I., Skudlarski, P., Gore, J. C. & Anderson, A. W. (2000) Expertise for cars and birds recruits brain areas involved in face recognition. Nature Neuroscience 3(2):191–97.CrossRefGoogle ScholarPubMed

Gentner, D. & Stevens, A. L., eds. (1983) Mental models. Erlbaum.Google Scholar

Gibson, J. J. (1979) The ecological approach to visual perception. Erlbaum.Google Scholar

Gigerenzer, G., Todd, P. M. & The ABC Research Group (1999) Simple heuristics that make us smart. Oxford University Press.Google Scholar

Gilovich, T., Griffin, D. & Kahneman, D., eds. (2002) Heuristics and biases: The psychology of intuitive judgment. Cambridge University Press.Google Scholar

Glenberg, A. M., Becker, R., Klötzer, S., Kolanko, L., Müller, S. & Rinck, M. (2009) Episodic affordances contribute to language comprehension. Language and Cognition 1:113–35.Google Scholar

Glenberg, A. M., Brown, M. & Levin, J. R. (2007) Enhancing comprehension in small reading groups using a manipulation strategy. Contemporary Educational Psychology 32:389–99.Google Scholar

Glenberg, A. M., Sato, M. & Cattaneo, L. (2008a) Use-induced motor plasticity affects the processing of abstract and concrete language. Current Biology 18:R290–91.Google Scholar

Glenberg, A. M., Sato, M., Cattaneo, L., Riggio, L., Palumbo, D. & Buccino, G. (2008b) Processing abstract language modulates motor system activity. Quarterly Journal of Experimental Psychology 61:905–19.CrossRefGoogle ScholarPubMed

Goldin-Meadow, S. (2003) Hearing gesture: How our hands help us think. Belknap Press.Google Scholar

Graziano, M. S. A., Taylor, C. S. R. & Moore, T. (2002a) Complex movements evoked by microstimulation of precentral cortex. Neuron 34:841–51.Google Scholar

Graziano, M. S. A., Taylor, C. S. R., Moore, T. & Cooke, D. F. (2002b) The cortical control of movement revisited. Neuron 36:349–62.Google Scholar

Grill-Spector, K., Sayres, R. & Ress, D. (2006) High-resolution imaging reveals highly selective nonface clusters in the fusiform face area. Nature Neuroscience 9(9):1177–85.CrossRefGoogle ScholarPubMed

Haggard, P., Rossetti, Y. & Kawato, M., eds. (2008) Sensorimotor foundations of higher cognition. Oxford University Press.Google Scholar

Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Wedeen, V. J. & Sporns, O. (2008) Mapping the structural core of human cerebral cortex. PLoS Biology 6(7):e159. Available at: http://biology.plosjournals.org/perlserv/?request=get-document. doi:10.1371/journal.pbio.0060159.Google Scholar

Hall, J. S. (2009) The robotics path to AGI using servo stacks. In: Proceedings of the Second Conference on Artificial General Intelligence, ed. Goertzel, B., Hitzler, P. & Hutter, M., pp. 4954. Atlantis Press. doi:10.2991/agi.2009.5.Google Scholar

Hamzei, F., Rijntjes, M., Dettmers, C., Glauche, V., Weiller, C. & Büchel (2003) The human action recognition system and its relationship to Broca's area: An fMRI study. Neuroimage 19:637–44.Google Scholar

Hanakawa, T., Honda, M., Sawamoto, N., Okada, T., Yonekura, Y., Fukuyama, H. & Shibasaki, H. (2002) The role of rostral Brodmann area 6 in mental-operation tasks: An integrative neuroimaging approach. Cerebral Cortex 12:1157–70.Google Scholar

Ho, T. -Y., Lama, P. -M. & Leung, C. -S. (2008) Parallelization of cellular neural networks on GPU. Pattern Recognition 41(8):2684–92.CrossRefGoogle Scholar

Honey, C. J., Kötter, R., Breakspear, M. & Sporns, O. (2007) Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proceedings of the National Academy of Sciences USA 104:10240–45.Google Scholar

Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J. P., Meuli, R. & Hagmann, P. (2009) Predicting human resting-state functional connectivity from structural connectivity. Proceedings of the National Academy of Sciences USA 106(6):2035–40.Google Scholar

Hopkin, V. D. (1995) Human factors in air traffic control. CRC Press.Google Scholar

Hubbard, E. M., Piazza, M., Pinel, P. & Dehaene, S. (2005) Interactions between number and space in parietal cortex. Nature Reviews Neuroscience 6(6):435–48.Google Scholar

Hurford, J. (2003) The neural basis of predicate-argument structure. Behavioral and Brain Sciences 26(3):261–83.Google Scholar

Hurley, S. L. (2005) The shared circuits hypothesis: A unified functional architecture for control, imitation and simulation. In: Perspectives on imitation: From neuroscience to social science, ed. Hurley, S. & Chater, N., pp. 7695. MIT Press.Google Scholar

Hurley, S. L. (2008) The shared circuits model (SCM): How control, mirroring, and simulation can enable imitation, deliberation, and mindreading. Behavioral and Brain Sciences 31(1):158.CrossRefGoogle ScholarPubMed

Iriki, A. (2005). A prototype of homo-faber: A silent precursor of human intelligence in the tool-using monkey brain. In: From monkey brain to human brain, ed. Dehaene, S., Duhamel, J. R., Hauser, M. & Rizzolati, G., pp. 133–57. MIT Press.Google Scholar

Iriki, A. & Sakura, O. (2008) Neuroscience of primate intellectual evolution: Natural selection and passive and intentional niche construction. Philosophical Transactions of the Royal Society of London, B: Biological Science 363:2229–41.CrossRefGoogle ScholarPubMed

Jeannerod, M. (1994) The representing brain: Neural correlates of motor intention and imagery. Behavioral and Brain Sciences 17:187245.Google Scholar

Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabási, A. -L. (2000) The large-scale organization of metabolic networks. Nature 407:651–54.Google Scholar

Jilk, D. J., Lebiere, C., O'Reilly, R. C. & Anderson, J. R. (2008) SAL: An explicitly pluralistic cognitive architecture. Journal of Experimental and Theoretical Artificial Intelligence 20:197218.Google Scholar

Johnson-Laird, P. N. (1983) Mental models: Towards a cognitive science of language, inference, and consciousness. Harvard University Press.Google Scholar

Kanwisher, N., McDermott, J. & Chun, M. (1997) The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience 17(11):4302–11.CrossRefGoogle ScholarPubMed

Koch, C. & Segev, I. (2000) The role of single neurons in information processing. Nature Neuroscience 3:1171–77.Google Scholar

Laird, A. R., Lancaster, J. L. & Fox, P. T. (2005) BrainMap: The social evolution of a functional neuroimaging database. Neuroinformatics 3:6578.Google Scholar

Lakoff, G. & Johnson, M. (1980) Metaphors we live by. University of Chicago Press.Google Scholar

Lakoff, G. & Johnson, M. (1999) Philosophy in the flesh: The embodied mind and its challenge to western thought. Basic Books.Google Scholar

Lakoff, G. & Núñez, R. (2000) Where mathematics comes from: How the embodied mind brings mathematics into being. Basic Books.Google Scholar

Lloyd, D. (2000) Terra cognita: From functional neuroimaging to the map of the mind. Brain and Mind 1(1):93116.CrossRefGoogle Scholar

Marcus, G. F. (2004) The birth of the mind: How a tiny number of genes creates the complexities of human thought. Basic Books.Google Scholar

Marcus, G. F. (2008) Kluge: The haphazard construction of the human mind. Houghton Mifflin.Google Scholar

Martin, A., Haxby, J. V., Lalonde, F. M., Wiggs, C. L. & Ungerleider, L. G. (1995) Discrete cortical regions associated with knowledge of color and knowledge of action. Science 270:102105.Google Scholar

Martin, A., Ungerleider, L. G. & Haxby, J. V. (2000) Category-specificity and the brain: the sensorymotor model of semantic representations of objects. In: The new cognitive neurosciences, 2nd edition, ed. Gazzaniga, M. S., pp. 1023–36. MIT Press.Google Scholar

Martin, A., Wiggs, C. L., Ungerleider, L. G. & Haxby, J. V. (1996) Neural correlates of category-specific knowledge. Nature 379:649–52.CrossRefGoogle ScholarPubMed

Mesulam, M.-M. (1990) Large-scale neurocognitive networks and distributed processing for attention, language and memory. Annals of Neurology 28:597613.Google Scholar

Miali, R. C. (2003) Connecting mirror neurons and forward models. NeuroReport 14(17):2135–37.Google Scholar

Mitchell, M. (2006). Complex systems: Network thinking. Artificial Intelligence 170:1194–212.Google Scholar

Müller, R.-A. & Basho, S. (2004) Are nonlinguistic functions in “Broca's area” prerequisites for language acquisition? fMRI findings from an ontogenetic viewpoint. Brain and Language 89(2):329–36.Google Scholar

Murphy, F. C., Nimmo-Smith, I. & Lawrence, A. D. (2003) Functional neuroanatomy of emotions: A meta-analysis. Cognitive, Affective and Behavioral Neuroscience 3(3):207–33.CrossRefGoogle ScholarPubMed

Newell, A. & Simon, H. A. (1976) Computer science as empirical enquiry. Communications of the ACM 19(3):113–26.CrossRefGoogle Scholar

Newman, M., Barabasi, A.-L. & Watts, D. J. (2006) The structure and dynamics of networks. Princeton University Press.Google Scholar

Nishitani, N., Schürmann, M., Amunts, K. & Hari, R. (2005) Broca's region: From action to language. Physiology 20:6069.Google Scholar

Odling-Smee, F. J., laland, K. N. & Geldman, M. W. (2005) Niche construction: The neglected process in evolution. Princeton University Press.Google Scholar

O'Reilly, R. C. (1998) Six principles for biologically based computational models of cortical cognition. Trends in Cognitive Sciences 2:455–62.Google Scholar

O'Reilly, R. C. & Munakata, Y. (2000) Computational explorations in cognitive neuroscience: Understanding the mind by simulating the brain. MIT Press.Google Scholar

Penner-Wilger, M. (2009) Subitizing, finger gnosis, and finger agility as precursors to the representation of number. Unpublished doctoral dissertation, Department of Cognitive Science, Carleton University, Ottawa, Canada. http://gradworks.umi.com/NR/52/NR52070.Google Scholar

Penner-Wilger, M. & Anderson, M. L. (2008) An alternative view of the relation between finger gnosis and math ability: Redeployment of finger representations for the representation of number. In: Proceedings of the 30th Annual Meeting of the Cognitive Science Society, Austin, TX, July 23–26, 2008, ed. Love, B. C., McRae, K. & Sloutsky, V. M., pp. 1647–52. Cognitive Science Society.Google Scholar

Penner-Wilger, M. & Anderson, M. L. (submitted) The relation between finger recognition and mathematical ability: Why redeployment of neural circuits best explains the finding.Google Scholar

Pereira, F., Mitchell, T. & Botvinick, M. M. (2009) Machine learning classifiers and fMRI: A tutorial overview. NeuroImage 45:S199209.CrossRefGoogle ScholarPubMed

Phan, K. L, Wager, T., Taylor, S. F. & Liberzon, I. (2002) Functional neuroanatomy of mmotion: A meta-analysis of emotion activation studies in PET and fMRI. NeuroImage 16(2):331–48.Google Scholar

Piaget, J. (1952) The child's conception of number. Routledge and Kegan Paul.Google Scholar

Plaut, D. C. (1995) Double dissociation without modularity: Evidence from connectionist neuropsychology. Journal of Clinical and Experimental Neuropsychology 17:291321.CrossRefGoogle ScholarPubMed

Poldrack, R. A. (2006) Can cognitive processes be inferred from neuroimaging data? Trends in Cognitive Sciences 10:5963.Google Scholar

Postuma, R. B. & Dagher, A. (2006) Basal ganglia functional connectivity based on a meta-analysis of 126 PET and fMRI publications. Cerebral Cortex 16(10):1508–21.Google Scholar

Prinz, J. (2002) Furnishing the mind: Concepts and their perceptual basis. MIT Press.Google Scholar

Prinz, J. (2006) Is the mind really modular? In: Contemporary debates in cognitive science, ed. Stainton, R. J., pp. 2236. Blackwell.Google Scholar

Pulvermüller, F. (2005) Brain mechanisms linking language and action. Nature Reviews Neuroscience 6:576–82.Google Scholar

Quartz, S. R. & Sejnowski, T. J. (1997) The neural basis of cognitive development: A constructivist manifesto. Behavioral and Brain Sciences 20:537–56.Google Scholar

Quince, C., Higgs, P. G. & McKane, A. J. (2002) Food web structure and the evolution of ecological communities. In: Biological evolution and statistical physics: Lecture notes in Physics 585, ed. Laessig, M. & Valleriani, A., pp. 281–98. Springer-Verlag.Google Scholar

Rasmussen, J. & Vicente, K. J. (1989) Coping with human errors through system design: implications for ecological interface design. International Journal of Man-Machine Studies 31:517–34.Google Scholar

Rhodes, G., Byatt, G., Michie, P. T. & Puce, A. (2004) Is the Fusiform Face Area specialized for faces, individuation, or expert individuation?. Journal of Cognitive Neuroscience 16(2):189203.CrossRefGoogle ScholarPubMed

Richardson, D., Spivey, M., Barsalou, L. & McRae, K. (2003) Spatial representations activated during real-time comprehension of verbs. Cognitive Science 27:767–80.Google Scholar

Ritter, F. E. & Young, R. M., eds. (2001) Using cognitive models to improve interface design. International Journal of Human-Computer Studies 55(1):1107. (Special Issue.)Google Scholar

Rizzolatti, G., Fadiga, L., Gallese, V. & Fogassi, L. (1996) Premotor cortex and the recognition of motor actions. Cognitive Brain Research 3:131–41.Google Scholar

Roux, F. -E., Boetto, S., Sacko, O., Chollet, F. & Tremoulet, M. (2003) Writing, calculating, and finger recognition in the region of the angular gyrus: A cortical stimulation study of Gerstmann syndrome. Journal of Neurosurgery 99:716–27.Google Scholar

Rumelhart, D. E. & McClelland, J. L (1986) Parallel distributed processing: Explorations in the microstructure of cognition. MIT Press.Google Scholar

Rusconi, E., Walsh, V. & Butterworth, B. (2005) Dexterity with numbers: rTMS over left angular gyrus disrupts finger gnosis and number processing. Neuropsychologia 43:1609–24.Google Scholar

Salvucci, D. D. (2005) A multitasking general executive for compound continuous tasks. Cognitive Science 29:457–92.Google Scholar

Sandler, W. & Lillo-Martin, D. (2006) Sign languages and linguistic universals. Cambridge University Press.Google Scholar

Scher, S. J. (2004) A lego model of the modularity of the mind. Journal of Cultural and Evolutionary Psychology 2(21):248–59.Google Scholar

Simmons, W. K., Ramjee, V., Beauchamp, M. S., McRae, K., Martin, A. & Barsalou, L. W. (2007) A common neural substrate for perceiving and knowing about color. Neuropsychologia 45(12): 2802–10.CrossRefGoogle ScholarPubMed

Simon, H. A. (1962/1969) The architecture of complexity. Proceedings of the American Philosophical Association 106:467–82. Reprinted in: H. Simon, The sciences of the artificial, 1st edition, pp. 192–229. MIT Press, 1969.Google Scholar

Sporns, O., Chialvo, D. R., Kaiser, M. & Hilgetag, C. C. (2004) Organization, development and function of complex brain networks. Trends in Cognitive Sciences 8:418–25.Google Scholar

Sporns, O., Tononi, G. & Edelman, G. M. (2000) Theoretical neuroanatomy: Relating anatomical and functional connectivity in graphs and cortical connection matrices. Cerebral Cortex 10:127–41.Google Scholar

Sternberg, S. (1969) The discovery of processing stages: Extensions of Donders' method. Acta Psychologica 30: 276315.Google Scholar

Stewart, T. C. & West, R. L. (2007) Cognitive redeployment in ACT-R: Salience, vision, and memory. Paper presented at the 8th International Conference on Cognitive Modelling, Ann Arbor, MI, July 26–29, 2007.Google Scholar

Svoboda, E., McKinnon, M. C. & Levine, B. (2006) The functional neuroanatomy of autobiographical memory: A meta-analysis. Neuropsychologia 44(12):2189–208.Google Scholar

Talairach, J. & Tournaux, P. (1988) Co-planar stereotaxic atlas of the human brain. Thieme.Google Scholar

Tettamanti, M. & & Weniger, D. (2006) Broca's area: A supramodal hierarchical processor? Cortex 42:491–94.Google Scholar

Thoenissen, D., Zilles, K. & Toni, I. (2002) Differential involvement of parietal and precentral regions in movement preparation and motor intention. Journal of Neuroscience 22:9024–34.Google Scholar

Tooby, J. & Cosmides, L. (1992) The psychological foundations of culture. In: The adapted mind: Evolutionary psychology and the generation of culture, ed. Barkow, J., Cosmides, L. & Tooby, J., pp. 19136. Oxford University Press.Google Scholar

Turkeltaub, P. E., Eden, G. F., Jones, K. M. & Zeffiro, T. A. (2002) Meta-analysis of the functional neuroanatomy of single-word reading: Method and validation. NeuroImage 16:765–80.CrossRefGoogle ScholarPubMed

Van Orden, G. C., Pennington, B. F. & Stone, G. O. (2001) What do double dissociations really prove? Cognitive Science 25:111–72.CrossRefGoogle Scholar

Weiskopf, D. (2007) Concept empiricism and the vehicles of thought. The Journal of Consciousness Studies 14:156–83.Google Scholar

Wen, Q. & Chklovskii, D. B. (2008) A cost–benefit analysis of neuronal morphology. Journal of Neurophysiology 99:2320–28.Google Scholar

Wilson, M. (2001) The case for sensorimotor coding in working memory. Psychonomic Bulletin and Review 8:4457.Google Scholar

Wilson, M. (2002) Six views of embodied cognition. Psychonomic Bulletin and Review 9(4):625–36.Google Scholar

Wolpert, D. M., Doya, K. & Kawato, M. (2003) A unifying computational framework for motor control and social interaction. Philosophical Transactions of the Royal Society B: Biological Sciences 358:593602.Google Scholar

Zago, L., Pesenti, M., Mellet, E., Crivello, F., Mazoyer, B. & Tzourio-Mazoyer, N. (2001) Neural correlates of simple and complex mental calculation. NeuroImage 13:314–27.Google Scholar