cambridge.org

Mutants affecting amino acid cross-pathway control in Neurospora crassa | Genetics Research | Cambridge Core

  • ️Sun Mar 16 2025

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Arginine-requiring mutants of Neurospora crassa were isolated using a strain partially impaired in an enzyme of the arginine pathway (bradytroph). Among these, five strains were found which carry mutations at a new locus, cpc-1+. The recessive cpc-1 alleles interfere with the cross-pathway control of amino acid biosynthetic enzymes. The enzymes studied, three of arginine and one each of histidine and lysine biosynthesis, fail to derepress under conditions which normally result in elevation of enzyme concentration, namely arginine, histidine or tryptophan limitation. Enzymes not involved in amino acid biosynthesis are still able to derepress in the presence of cpc-1. In wild-type backgound, i.e. with the bradytroph replaced, cpc-1 strains lose the original arginine-requirement. cpc-1 mutations confer sensitivity of growth to 3-amino-1,2,4-triazole.

Type

Research Article

Copyright

Copyright © Cambridge University Press 1982

References

Albrecht, A. M. & Vogel, H. J. (1964). Acetylornithine δ-transaminase. Partial purification and repression behavior. Journal of Biological Chemistry 239, 18721876.CrossRefGoogle ScholarPubMed

Ames, B. N. (1957). The biosynthesis of histidine; L-histidinol phosphate phosphatase. Journal of Biological Chemistry 226, 583593.CrossRefGoogle ScholarPubMed

Barthelmess, I. B., Curtis, C. F. & Kacser, H. (1974). Control of the flux to arginine in Neurospora crassa: De-repression of the last three enzymes of the arginine pathway. Journal of Molecular Biology 87, 303316.CrossRefGoogle ScholarPubMed

Carsiotis, M. & Lacy, A. M. (1965). Increased activity of tryptophan biosynthetic enzymes in histidine mutants of Neurospora crassa. Journal of Bacteriology 89, 14721477.Google ScholarPubMed

Carsiotis, M., Jones, R. F., Lacy, A. M., Cleary, T. J. & Fankhauser, D. B. (1970). Histidine-mediated control of tryptophan biosynthetic enzymes in Neurospora crassa. Journal of Bacteriology 104, 98106.CrossRefGoogle ScholarPubMed

Carsiotis, M. & Jones, R. F. (1974). Cross-pathway regulation: Tryptophan-mediated control of histidine and arginine biosynthetic enzymes in Neurospora crassa. Journal of Bacteriology 119, 889892.CrossRefGoogle ScholarPubMed

Carsiotis, M., Jones, R. F. & Wesseling, A. C. (1974). Cross-pathway regulation: Histidine-mediated control of histidine, tryptophan and arginine biosynthetic enzymes in Neurospora crassa. Journal of Bacteriology 119, 893898.CrossRefGoogle ScholarPubMed

Cybis, J. & Davis, R. H. (1975). Organization and control in the arginine biosynthetic pathway of Neurospora. Journal of Bacteriology 123, 196202.CrossRefGoogle ScholarPubMed

Davis, R. H. (1960). An enzyme difference among pyr-3 mutants of Neurospora crassa. Proceedings of the National Academy of Science, U.S.A. 46, 677682.CrossRefGoogle Scholar

Davis, R. H. (1962 a). Consequences of a suppressor gene effective with pyrimidine and proline mutants of Neurospora. Genetics 47, 351360.CrossRefGoogle ScholarPubMed

Davis, R. H. (1962 b). A mutant form of ornithine transcarbamylase found in a strain of Neurospora carrying a pyrimidine-proline suppressor gene. Archives of Biochemistry and Biophysics 97, 185191.Google Scholar

Davis, R. H. (1979). Genetics of arginine biosynthesis in Neurospora crassa. Genetics 93, 557575.Google ScholarPubMed

Flavell, R. B. & Fincham, J. R. S. (1968 a). Acetate-nonutilizing mutants of Neurospora crassa. I. Mutant isolation, complementation studies and linkage relationships. Journal of Bacteriology 95, 10561062.CrossRefGoogle Scholar

Flavell, R. B. & Fincham, J. R. S. (1968 b). Acetate-nonutilizing mutants of Neurospora crassa. II. Biochemical deficiencies and the roles of certain enzymes. Journal of Bacteriology 95, 10631068.CrossRefGoogle ScholarPubMed

Flint, H. J. & Kemp, B. F. (1981). General control of arginine biosynthetic enzymes in Neurospora crassa. Journal of General Microbiology 124. (In the Press.)Google ScholarPubMed

Hütter, R. & DeMoss, J. A. (1967). Organization of the tryptophan pathway: a phylogenetic study of the fungi. Journal of Bacteriology 94, 18961907.CrossRefGoogle ScholarPubMed

Lester, G. (1971). Regulation of tryptophan biosynthetic enzymes in Neurospora crassa. Journal of Bacteriology 107, 193202.CrossRefGoogle ScholarPubMed

Littlewood, B. S., Chia, W. & Metzenberg, R. L. (1975). Genetic control of phosphate-metabolizing enzymes in Neurospora crassa: Relationships among regulatory mutants. Genetics 79, 419434.CrossRefGoogle Scholar

Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 193, 265275.CrossRefGoogle ScholarPubMed

Martin, R. G., Berberich, M. A., Ames, B. N., Davis, W. W., Goldberger, R. F. & Yourno, J. D. (1971). Enzymes and intermediates of histidine biosynthesis in Salmonella typhimurium. Methods in Enzymology 17B pp. 344. ed. Tabor, H. & Tabor, C.Google Scholar

Messenguy, F. (1979). Concerted repression of the synthesis of the arginine biosynthetic enzymes by amino acids: a comparison between the regulatory mechanisms controlling amino acid biosynthesis in bacteria and in yeast. Molecular and general Genetics 169, 8595.Google ScholarPubMed

Piotrowska, M. (1980). Cross-pathway regulation of ornithine carbamoyltransferase synthesis in Aspergillus nidulans. Journal of General Microbiology 116, 335339.Google Scholar

Saunders, P. P. & Broquist, H. P. (1966). Saccharopine, an intermediate of the aminoadipic acid pathway of lysine biosynthesis. Journal of Biological Chemistry 241, 34353440.CrossRefGoogle ScholarPubMed

Sohürch, A. R. (1972). Zur Regulation der Tryptophan-Biosynthese. Diss. Nr. 4862, Zurich.Google Scholar

Schürch, A., Miozzari, J. & Hütter, R. (1974). Regulation of tryptophan biosynthesis in Saccharomyces cerevisiae: Mode of action of 5-methyl-tryptophan and 5-methyl-tryptophansensitive mutants. Journal of Bacteriology 117, 11311140.CrossRefGoogle ScholarPubMed

Staub, M. & Dénes, G. (1966). Mechanism of arginine biosynthesis in Chlamydomonas reinhardti. I. Purification and properties of ornithine acetyltransferase. Biochimica et biophysica acta 128, 8291.CrossRefGoogle ScholarPubMed

Vogel, H. J. (1964). Distribution of lysine among fungi: evolutionary implications. American Naturalist 98, 435446.CrossRefGoogle Scholar

Wesseling, A. C. & Carsiotis, M. (1973). Arginine mutants of Neurospora crossa: Amino acid cross-pathway regulation. Abstract, Annual Meeting of the American Society for Microbiology, P 69, p. 152.Google Scholar

Wesseling, A. C. & Carsiotis, M. (1974). Amino acid cross-pathway regulation in Neurospora crossa: Involvement of nitrogen-rich amino acids. Abstract, Annual Meeting of the American Society for Microbiology, P 288, p, 192.Google Scholar

Wolf, E. C. & Weiss, R. L. (1980). Acetylglutamate kinase: A mitochondrial feed-back sensitive enzyme of arginine biosynthesis in Neurospora crassa. Journal of Biological Chemistry 255, 91899195.CrossRefGoogle Scholar

Wolfner, M., Yep, D., Messenguy, F. & Fink, G. R. (1975). Integration of amino acid biosynthesis into the cell cycle of Saccharomyces cerevisiae. Journal of Molecular Biology 96, 273290.CrossRefGoogle ScholarPubMed