link.springer.com

Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients - Journal of Paleolimnology

  • ️Marchetto, Aldo
  • ️Fri May 01 1998

References

  • Agbeti, M. D., 1992. Relationship between diatom assemblages and trophic variables: a comparison of old and new approaches. Can. J. Fish. aquat. Sci. 49: 1171–1175.

    Google Scholar 

  • Agbeti, M. & M. Dickman, 1989. Use of lake fossil diatom assemblages to determine historical changes in trophic status. Can. J. Fish. aquat. Sci. 46: 1013–1021.

    Google Scholar 

  • Anderson, N. J., 1993. Natural versus anthropogenic change in lakes: the role of the sediment record. Trends in Ecology and Evolution 8: 356–361.

    Google Scholar 

  • Anderson, N. J., 1995. Naturally eutrophic lakes: reality, myth or myopia? Trends in Ecology and Evolution 10: 137–138.

    Google Scholar 

  • Anderson, N. J. & B. V. Odgaard, 1994. Recent palaeolimnology of three shallow Danish lakes. Hydrobiologia 275/276: 411–422.

    Google Scholar 

  • Anderson, N. J. & B. Rippey, 1994. Monitoring lake recovery from pointsource eutrophication: the use of diatom-inferred epilimnetic total phosphorus and sediment chemistry. Freshwat. Biol. 32: 625–639.

    Google Scholar 

  • Anderson, N. J., B. Rippey & C. E. Gibson, 1993. A comparison of sedimentary and diatom-inferred phosphorus profiles: implications for defining predisturbance nutrient conditions. Hydrobiologia 253: 357–366.

    Google Scholar 

  • Bayerisches Landesamt füur Wasserwirtschaft (ed.), 1993. Biologische Trophieindikation im Litoral von Seen. Materialien 31: 1–173.

  • Bennion, H., 1994. A diatom-phosphorus transfer function for shallow, eutrophic ponds in southeast England. Hydrobiologia 275/276: 391–410.

    Google Scholar 

  • Bennion, H., S. Wunsam & R. Schmidt, 1995. The validation of diatom-phosphorus transfer functions: an example from Mondsee, Austria. Freshwat. Biol. 34: 271–283.

    Google Scholar 

  • Bennion, H., T. E. H. Allott, D. T. Monteith, C. A. Duigan, E. Y. Haworth, N. J. Anderson & S. Juggins, 1996a. The Anglesey lakes, Wales, UK: changes in trophic status of three standing waters as inferred from diatom transfer functions and their implications for conservation. Aquatic Conservation: Marine and Freshwater Ecosystems 6: 81–92.

    Google Scholar 

  • Bennion, H., S. Juggins & N. J. Anderson, 1996b. Predicting epilimnetic phosphorus concentrations using an improved diatom-based transfer function and its application to lake eutrophication management. Envir. Sci. Technol. 30: 2004–2007.

    Google Scholar 

  • Birks, H. H., 1980. Plant macrofossils in Quaternary lake sediments. Archiv füur Hydrobiologie Beiheft, 15: 1–60.

    Google Scholar 

  • Birks, H. J. B., 1994. The importance of pollen and diatom taxonomic precision in quantitative palaeoenvironmental reconstructions. Rev. Palaeobot. Palynol. 83: 107–117.

    Google Scholar 

  • Birks, H. J. B., 1995. Quantitative palaeoenvironmental reconstructions. In Maddy, D. & J. S. Brew (eds), Statistical modelling of Quaternary science data. Technical Guide 5, Quat. Res. Assoc., Cambridge: 161–254.

    Google Scholar 

  • Bos, D. G., 1996. Cladocera and anostraca as paleolimnological indicators of lake-water conductivity. M. Sci. Thesis, Queen's University, Kingston: 73 pp.

    Google Scholar 

  • Bos, D. G., B. F. Cumming, C. E. Watters & J. P. Smol, 1996. The relationship between zooplankton, conductivity and lake-water ionic composition in 111 lakes from the Interior Plateau of British Columbia, Canada. Int. J. Salt Lake Res. 5: 1–15.

    Google Scholar 

  • Boucherle, M. M.&H. Züullig, 1983. Cladoceran remains as evidence of change in trophic state in three Swiss lakes. Hydrobiologia 103: 141–146.

    Google Scholar 

  • Bradbury, J. P., 1975. Diatom stratigraphy and human settlement in Minnesota. Geol. Soc. Am. Spec. 171: 1–69.

    Google Scholar 

  • Brenner, M. & M. W. Binford, 1988. Relationship between concentration of sedimentary variables and trophic state in Florida lakes. Can. J. Fish. aquat. Sci. 45: 294–300.

    Google Scholar 

  • Brooks, J. L. & S. I. Dodson, 1965. Predation, body size, and composition of plankton. Science 150: 28–35.

    Google Scholar 

  • Brundin, L., 1956. Die bodenfaunistischen Seetypen und ihre Anwendung auf die Süudhalbkugel. Rep. Inst. Freshwat. Res. Drottningholm 37: 186–235.

    Google Scholar 

  • Carney, H. J., 1982. Algal dynamics and trophic interactions in the recent history of Frains Lake, Michigan. Ecology 63: 1814–1826.

    Google Scholar 

  • Carney, H. J. & C. D. Sandgren, 1983. Chrysophycean cysts: indicators of eutrophication in the recent sediments of Frains Lake, Michigan, USA. Hydrobiologia 101: 195–202.

    Google Scholar 

  • Catalan, J. & E. J. Fee, 1994. Interannual variability in limnic ecosystems: origin, patterns, and predictability. In Margalef, R. (ed.), Limnology now: a paradigm of planetary problems. Elsevier Science B.V. 81–97.

  • Christie, C. E. & J. P. Smol, 1993. Diatom assemblages as indicators of lake trophic status in southeastern Ontario lakes. J. Phycol. 29: 575–586.

    Google Scholar 

  • Crisman, T. L. & D. R. Whitehead, 1978. Paleolimnological studies on small New England (USA) ponds. Part II. Cladoceran community response to trophic oscillations. Pol. Arch. Hydrobiol. 25: 75–86.

    Google Scholar 

  • Cronberg, G., 1986. Chrysophycean cysts and scales in lake sediments: a review. In Kristiansen, J. & R. A. Andersen (eds), Chrysophytes: aspects and problems, Cambridge University Press, Cambridge: 281–315.

    Google Scholar 

  • Cronberg, G. & C. D. Sandgren. 1986. A proposal for the development of standardized nomenclature and terminology for chrysophycean statospores. In Kristiansen, J. & R. A. Andersen (eds), Chrysophytes: aspects and problems, Cambridge University Press, Cambridge: 317–328.

    Google Scholar 

  • Cumming, B. F., J. P. Smol & H. J. B. Birks, 1991. The relationship between sedimentary chrysophyte scales (Chrysophyceae and Synurophyceae) and limnological characteristics in 25 Norwegian lakes. Nord. J. Bot., 11: 231–242.

    Google Scholar 

  • Cumming, B. F., S. E. Wilson & J. P. Smol. 1993. Paleolimnological potential of chrysophyte cysts and scales, and sponge spicules as indicators of lake salinity. Int. J. Salt Lake Res. 2: 87–92.

    Google Scholar 

  • De Wolf, H., 1982. Method of coding of ecological data from diatoms for computer utilization. Med. Rijks Geol. Dienst 36: 95–98.

    Google Scholar 

  • Dixit, S. S. & J. P. Smol, 1994. Diatoms as indicators in the environmental monitoring and assessment program-surface waters (EMAPSW). Environmental Monitoring and Ass. 31: 275–306.

    Google Scholar 

  • Duff, K. E. & J. P. Smol. 1991. Morphological description and stratigraphic distributions of the chrysophycean stomatocysts from a recently acidified lake (Adirondack Park, N.Y.). J. Paleolim. 5: 73–113.

    Google Scholar 

  • Duff, K. E., B. A. Zeeb & J. P. Smol, 1995. Atlas of Chrysophycean cysts. Kluwer Academic Press, Dordrecht, The Netherlands, 189 pp.

    Google Scholar 

  • Engstrom, D. R., E. B. Swain & J. C. Kingston, 1985. A palaeolimnological record of human disturbance from Harvey' Lake, Vermont: geochemistry, pigments and diatoms. Freshwat. Biol. 15: 261–288.

    Google Scholar 

  • Facher, E. & R. Schmidt, 1996. A siliceous chrysophycean cystbased pH transfer function for Central European lakes. J. Paleolim. 16: 275–321.

    Google Scholar 

  • Forsberg, C. & S.O. Ryding, 1980. Eutrophication parameters and trophic indices in 30 Swedish wastereceiving lakes. Arch. Hydrobiol. 89: 189–207.

    Google Scholar 

  • Frey, D. G., 1969. Evidence for eutrophication from remains of organisms in sediments. In Eutrophication: Causes, consequences, correctives. Academy of Natural Sciences, Washington D.C.: 594–613.

    Google Scholar 

  • Frey, D. G., 1988. Littoral and offshore communities of diatoms, cladocerans and dipterous larvae, and their interpretation in paleolimnology. J. Paleolim. 1: 179–191.

    Google Scholar 

  • Fritz, S. C., J. C. Kingston & D. R. Engstrom, 1993. Quantitative trophic reconstruction from sedimentary diatom assemblages: a cautionary tale. Freshwat. Biol. 30: 1–23.

    Google Scholar 

  • Gibson, C. E., R. H. Foy & A. E. Bailey-Watts, 1996. An analysis of the total phosphorus cycle in some temperate lakes: the response to enrichment. Freshwat. Biol. 35: 525–532.

    Google Scholar 

  • Günther, J., 1983. Development of Grossensee (Holstein, Germany): variations in trophic status from the analysis of subfossil microfauna. Hydrobiologia 103: 231–234.

    Google Scholar 

  • Håkanson, L., 1992. Considerations on representative water quality data. Int. Revue ges. Hydrobiol., 77: 497–505.

    Google Scholar 

  • Hall, R. I. & J. P. Smol, 1992. A weighted-averaging regression and calibration model for inferring total phosphorus concentration from diatoms in British Columbia (Canada) lakes. Freshwat. Biol. 27: 417–434.

    Google Scholar 

  • Hall, R. I. & J. P. Smol, 1996. Paleolimnological assessment of longterm water-quality changes in south-central Ontario lakes affected by cottage development and acidification. Can. J. Fish. aquat. Sci. 53: 1–17.

    Google Scholar 

  • Harmsworth, R. V. & M. C. Whiteside, 1968. Relation of cladoceran remains in lake sediments to primary productivity of lakes. Ecology 49: 998–1000.

    Google Scholar 

  • Hill, M. O., 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54: 427–432.

    Google Scholar 

  • Hofmann, G., 1994.Aufwuchs Diatomeen in Seen und ihre Eignung als Indikatoren der Trophie. Bibliotheca Diatomologica 30: 1–241.

    Google Scholar 

  • Hofmann, W., 1971. Die postglaziale Entwicklung der Chironomidenund ChaoborusFauna (Dipt.) des Schöohsees. Arch. Hydrobiol. 40: 1–74.

    Google Scholar 

  • Hofmann, W., 1986a. Developmental history of the Großer Plöoner See and the Schöohsee (north Germany): cladoceran analysis, with special reference to eutrophication. Arch. Hydrobiol. 74: 259–287.

    Google Scholar 

  • Hofmann, W., 1986b. Chironomid Analysis. In Berglund, B. E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. J. Wiley & Sons, Chichester: 715–727.

    Google Scholar 

  • Hofmann, W., 1987. Cladocera in space and time: analysis of lake sediments. Hydrobiologia 145: 315–321.

    Google Scholar 

  • Hofmann, W., 1988. The significance of chironomid analysis (Insecta: Diptera) for paleolimnological research. Palaeogeogr., Palaeoclimatol., Palaeoecol. 62: 501–509.

    Google Scholar 

  • Hofmann, W., 1990. Sukzession der Cladocerenund Chironomidenfauna im Späatund Postglazial als Reaktion auf ÄAnderungen des Trophiegrades im Untersee (Kern US 8707). Ber. Röom.German. Kommission 71: 286–292.

    Google Scholar 

  • Hofmann, W., 1996. Empirical relationships between cladoceran fauna and trophic state in thirteen northern German lakes: analysis of surficial sediments. Hydrobiologia 318: 195–201.

    Google Scholar 

  • Hofmann, W. Late-Glacial/Holocene succession of the chironomid and cladoceran fauna of Soppensee (Central Switzerland). J. Paleolim. submitted.

  • Huisman, J., H. Olff & L. F. M. Fresco, 1993. A hierarchical set of models for species response models. J. Veg. Sci. 4: 37–46.

    Google Scholar 

  • Jeppesen, E., E. A. Madsen, J. P. Jensen & N. J. Anderson, 1996. Reconstructing the past density of planktivorous fish and trophic structure from sedimentary zooplankton fossils: a surface sediment calibration data set from shallow lakes. Freshwat. Biol. 36: 115–127.

    Google Scholar 

  • Jonasson, P. M., 1969. Bottom fauna and eutrophication. Eutrophication: causes, consequences and correctives. National Academy of Sciences, Washington D.C.: 274–305.

    Google Scholar 

  • Kansanen, P. H., 1985. Assessment of pollution history from recent sediments in Lake Vanajavesi, southern Finland. II. Changes in the Chironomidae, Chaoboridae and Ceratopogonidae (Diptera) fauna. Ann. Zool. Fenn. 22: 57–90.

    Google Scholar 

  • Keating, K. I., 1978. Blue-green algal inhibition of diatom growth: transition from mesotrophic to eutrophic community structure. Science 199: 971–973.

    Google Scholar 

  • Kerfoot, W. C., 1978. Combat between copepods and their prey: Cyclops, Epischura and Bosmina. Limnol. Oceanogr. 23: 1098–1103.

    Google Scholar 

  • Kilham, P., S. S. Kilham & R. E. Hecky, 1986. Hypothesized resource relationship among African planktonic diatoms. Limnol. Oceanogr. 31: 1169–1181.

    Google Scholar 

  • Kilham, S. S., E. C. Theriot & S. C. Fritz, 1996. Linking planktonic diatoms and climate in the large lakes of the Yellowstone ecosystem using resource theory. Limnol. Oceanogr. 41: 1052–1062.

    Google Scholar 

  • Kolkwitz, R., 1950. ÖOkologie der Saprobien. Über die Beziehungen der Wasserorganismen zur Umwelt. Schriftenreihe Verein für Wasser, Bodenund Lufthygiene 4: 64 pp.

  • Korhola, A., 1990. Paleolimnology and hydroseral development of the Kotasuo bog, southern Finland, with special reference to the Cladocera. Ann. Acad. Sci. Fenn. Ser. A 155: 1–40.

    Google Scholar 

  • Krause-Dellin, D. & C. Steinberg, 1986. Cladocera remains as indicators of lake acidification. Hydrobiologia 143: 129–134.

    Google Scholar 

  • Krause, W., 1981. Characeen als Bioindikatoren f üur den Gewäasserzustand. Limnologica 13: 399–418.

    Google Scholar 

  • Lange-Bertalot, H., 1978. Diatomeen-Differentialarten anstelle von Leitformen: Ein geeignetes Kriterium der Gewäasserbelastung. Arch. Hydrobiol. 51: 393–427.

    Google Scholar 

  • Lange-Bertalot, H., 1979. Pollution tolerance of diatoms as a criterion for water quality estimation. Nova Hedwigia Beiheft 64: 285–304.

    Google Scholar 

  • Likens, G. E., 1972. Eutrophication and aquatic ecosystems. In Likens, G. E. (ed.), Nutrients and eutrophication: the limitingnutrient controversy. ASLO, Lawrence, Kansas: 3–13.

    Google Scholar 

  • Lindegaard, C., 1995. Classification of waterbodies and pollution. In Armitage, P. D., P. S. Cranston & L. C. V. Pinder (eds), The Chironomidae: Biology and ecology of nonbiting midges. Chapman & Hall, London. 385–404.

    Google Scholar 

  • Lotter, A., 1988. Paläaoöokologische und paläaolimnologische Studie des Rotsees bei Luzern. Pollen-, grossrest-, diatomeen-und sedimentanalytische Untersuchungen. Diss. Bot. 124: 1–187.

    Google Scholar 

  • Lotter, A. F., 1989. Subfossil and modern diatom plankton and the paleolimnology of Rotsee (Switzerland) since 1850. Aquat. Sci. 51: 338–350.

    Google Scholar 

  • Lotter, A. F. The recent eutrophication of Baldeggersee (Switzerland) as assessed by fossil diatom assemblages. The Holocene, in press.

  • Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1997a Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. J. Paleolim. 18: 395–420.

    Google Scholar 

  • Lotter, A. F., M. Sturm, J. L. Teranes & B. Wehrli, 1997b. Varve formation since 1885 and high-resolution varve analyses in hypertrophic Baldeggersee (Switzerland). Aquatic Sciences 59: in press.

  • Lowe, R., 1974. Environmental requirements and pollution tolerances of freshwater diatoms. EPA6701474005, US EPA.

  • Lund, J.W. G., 1969. Phytoplankton. Eutrophication: causes, consequences, correctives. National Academy of Sciences, Washington D.C.: 306–330.

    Google Scholar 

  • Maberly, S. C., M.A. Hurley, C. Butterwick, J. E. Corry, S. I. Heaney, A. E. Irish, G. H. M. Jaworski, J. W. G. Lund, C. S. Reynolds & J. V. Roscoe, 1994. The rise and fall of Asterionella formosa in the south basin of Windermere: analysis of a 45year series of data. Freshwat. Biol. 31: 19–34.

    Google Scholar 

  • Marchetto, A. & A. Lami, 1994. Reconstruction of pH by chrysophycean scales in some lakes of the southern Alps. Hydrobiologia 274: 83–90.

    Google Scholar 

  • Müuller, B., A. F. Lotter, M. Sturm & A. Ammann, The influence of catchment and geographic location on the water and sediment composition of 68 small circumalpine lakes. Aquatic Sciences, in press.

  • Nygaard, G., 1956. Ancient and recent flora of diatoms and Chrysophycea in Lake GribsØo. Folia Limnologica Scandinavica 8: 50–62.

    Google Scholar 

  • OCDE, 1982. Eutrophisation des eaux. Méethodes de surveillance, d'éevaluation et de lutte. OCDE, Paris.

    Google Scholar 

  • Olander, H., A. Korhola & T. Blom, 1997. Surface sediment Chironomidae (Insecta: Diptera) distributions along an ecotonal transect in subarctic Fennoscandia: developing a tool for palaeotemperature reconstructions. J. Paleolim. 18: 45–59.

    Google Scholar 

  • Prentice, I. C., 1980. Multidimensional scaling as a research tool in Quaternary palynology: a review of theory and methods. Rev. Palaeobot. Palynol. 31: 71–104.

    Google Scholar 

  • Quinlan, R., J. P. Smol & R. I. Hall, Quantitative inferences of past hypolimnetic anoxia in south-central Ontario lakes using fossil midges (Diptera: Chironomidae). Can. J. Fish. aquat. Sci., in press.

  • Rast, W. & M. Holland, 1988. Eutrophication of lakes and reservoirs: a framework for making management decisions. Ambio 17: 2–12.

    Google Scholar 

  • Reavie, E. D., R. I. Hall & J. P. Smol, 1995. An expanded weighted-averaging model for phosphorus concentrations from diatom assemblages in eutrophic British Columbia (Canada) lakes. J. Paleolim. 14: 49–67.

    Google Scholar 

  • Rippey, B. & N. J. Anderson, 1996. Reconstruction of lake phosphorus loading and dynamics using the sedimentary record. Envir. Sci. Technol. 30: 1786–1788.

    Google Scholar 

  • Rosen, G., 1981. Phytoplankton indicators and their relations to certain chemical and physical factors. Limnologica 13: 263–290.

    Google Scholar 

  • Rybak, M., I. Rybak & K. Nicholls. 1991. Sedimentary chrysophycean cyst assemblages as paleoindicators in acid sensitive lakes. J. Paleolim. 5: 19–72.

    Google Scholar 

  • Sæaether, O. A., 1979. Chironomid communities as water quality indicators. Holarctic Ecology, 2: 65–74.

    Google Scholar 

  • Sæaether, O. A., 1980. The influence of eutrophication on deep lake benthic invertebrate communities. Prog.Water Technol. 12: 161–180.

    Google Scholar 

  • Salden, N., 1978. Beitrag zur ÖOkologie der Diatomeen (Bacillariophyceae) des Süusswassers. Dechenia Beihefte 22: 1–238.

    Google Scholar 

  • Sanders, R.W., K. G. Porter & R. J. McDomough. 1985. Bacterivory by ciliates, microflagellates and mixotrophic algae: factors influencing particle ingestion. EOS, 66: 1314.

    Google Scholar 

  • Sandgren, C. D., 1981. Characteristics of sexual and asexual resting cyst (statospore) formation in Dinobryon cylindricum Imhof (Chrysophyceae, Chrysophicota). Protistologica 16: 259–276.

    Google Scholar 

  • Sandgren, C. D., 1983. Morphological variability in populations of chrysophycean resting cysts. I. Genetic (interclonal) and encystment temperature effects on morphology. J. Phycol. 19: 64–70.

    Google Scholar 

  • Sandgren, C. D., 1988. The ecology of chrysophyte flagellates: their growth and perennation strategies as freshwater phytoplankton. In Sandgren, C. D. (ed.), Growth and reproductive strategies of freshwater phytoplankton. Cambridge University Press, Cambridge: 9–104.

    Google Scholar 

  • Schelske, C. L., D. J. Conley, E. F. Stoermer, T. L. Newberry & C. D. Campbell, 1986. Biogenic silica and phosphorus accumulation in sediments as indices of eutrophication in the Laurentian Great Lakes. Hydrobiologia 143: 79–86.

    Google Scholar 

  • Schindler, D. W., 1987. Detecting ecosystem response to anthropogenic stress. Can. J. Fish. aquat. Sci. 44: 6–25.

    Google Scholar 

  • Schmäah, A., 1993. Variation among fossil chironomid assemblages in surficial sediments of Bodensee-Untersee (SWGermany): implications for paleolimnological interpretation. J. Paleolim. 9: 99–108.

    Google Scholar 

  • Smol, J. P., 1985. The ratio of diatom frustules to chrysophycean statospores: a useful paleolimnological index. Hydrobiologia 123: 199–208.

    Google Scholar 

  • Smol, J. P., 1995. Application of Chrysophytes to problems in paleoecology. In Sandgren, C., J. P. Smol & J. Kristiansen (eds), Chrysophyte algae: Ecology, Phylogeny and Development. Cambridge University Press, Cambridge: 303–329.

    Google Scholar 

  • Stenson, J. A. E., 1976. Significance of predator influence on composition of Bosmina spp. populations. Limnol. Oceanogr. 21: 814–822.

    Google Scholar 

  • Stockner, J. G., 1971. Preliminary characterization of lakes in the Experimental Lakes Area, Northwestern Ontario, using diatom occurrences in sediments. J. Fish. Res. Bd Canada 28: 265–275.

    Google Scholar 

  • Stockner, J. G. & W. W. Benson, 1967. The succession of diatom assemblages in the recent sediments of Lake Washington. Limnol. Oceanogr. 12: 513–532.

    Google Scholar 

  • Synerholm, C. C., 1979. The chydorid cladocera fauna from surface lake sediments inMinnesota and North Dakota. Arch. Hydrobiol. 86: 137–151.

    Google Scholar 

  • Tarapchak, S. J. & C. Nalewajko, 1986. Synopsis: phosphorus – plankton dynamics symposium. Can. J. Fish. aquat. Sci. 43: 416–419.

    Google Scholar 

  • ter Braak, C. J. F., 1987–1992. CANOCO – a FORTRAN program for canonical community ordination. Microcomputer Power, Ithaca, New York: 95 pp.

    Google Scholar 

  • ter Braak, C. J. F., 1990. Update notes: CANOCO version 3.10. Agricultural Mathematics Group, Wageningen.

    Google Scholar 

  • ter Braak, C. J. F. & S. Juggins, 1993. Weighted averaging partial least squares regression (WA–PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269/270: 485–502.

    Google Scholar 

  • ter Braak, C. J. F., S. Juggins, H. J. B. Birks & H. van der Voet, 1993. Weighted averaging partial least squares regression (WAPLS): definition and comparison with other methods for species environment calibration. In Patil, G. P. & C. R. Rao (eds), Multivariate Environmental Statistics. Elsevier: 525–560.

  • ter Braak, C. J. F. & P. F. M. Verdonschot, 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat. Sci. 57: 255–289.

    Google Scholar 

  • Tilman, D., R. Kiesling, R. Sterner, S. S. Kilham & F. A. Johnson, 1986. Green, bluegreen and diatom algae: taxonomic differences in competitive ability for phosphorus, silicon and nitrogen. Arch. Hydrobiol. 106: 473–485.

    Google Scholar 

  • van Dam, H., A. Mertens & J. Sinkeldam, 1994. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Neth. J. aquat. Ecol. 28: 117–133.

    Google Scholar 

  • Vollenweider, R. W., 1950. ÖOkologische Untersuchungen von planktischen Algen auf experimenteller Grundlage. Schweiz. Z. Hydrol. 12: 193–262.

    Google Scholar 

  • Walker, I. R., 1995. Chironomids as indicators of past environmental change. In Armitage, P. D., P. S. Cranston & L. C. V. Pinder (eds), The Chironomidae: Biology and Ecology of Nonbiting Midges. Chapman & Hall, London: 405–422.

    Google Scholar 

  • Walker, I. R., J. P. Smol, D. R. Engstrom & H. J. B. Birks, 1991. An assessment of Chironomidae as quantitative indicators of past climatic change. Can. J. Fish. aquat. Sci. 48: 975–987.

    Google Scholar 

  • Walker, I. R., E. D. Reavie, S. Palmer & R. N. Nordin, 1993. A palaeoenvironmental assessment of human impact on Wood Lake, Okanagan Valley, British Columbia, Canada. Quat. Int. 20: 51–70.

    Google Scholar 

  • Walker, I. R., S. E. Wilson & J. P. Smol, 1995. Chironomidae (Diptera): quantitative palaeosalinity indicators for lakes of western Canada. Can. J. Fish. aquat. Sci. 52: 950–960.

    Google Scholar 

  • Warwick, W. F., 1980. Paleolimnology of the Bay of Quinte, Lake Ontario: 2800 years of cultural influence. Can. Bull. Fish. aquat. Sci. 206: 1–117.

    Google Scholar 

  • Whitmore, T. J., 1989. Florida diatom assemblages as indicators of trophic state and pH. Limnol. Oceanogr. 34: 882–895.

    Google Scholar 

  • Whiteside, M. C., 1969. Chydorid (Cladocera) remains in surficial sediments of Danish lakes and their significance to paleolimnological interpretations. Mitt. Int. Ver. Limnol. 17: 193–201.

    Google Scholar 

  • Whiteside, M. C., 1970. Danish chydorid cladocera: modern ecology and core studies. Ecological Monographs 40: 79–118.

    Google Scholar 

  • Whiteside, M. C., 1983. The mythical concept of eutrophication. Hydrobiologia 103: 107–111.

    Google Scholar 

  • Wiederholm, T., 1980. Use of benthos in lake monitoring. J. Wat. Pollut. Control Federation 52: 537–547.

    Google Scholar 

  • Wiederholm, T., 1984. Responses of aquatic insects to environmental pollution. In Resh, V. H. & D. M. Rosenberg (eds), The Ecology of Aquatic Insects. Praeger, New York: 508–557.

    Google Scholar 

  • Wiederholm, T. & L. Eriksson, 1979. Subfossil chironomids as evidence of eutrophication in Ekoln Bay, central Sweden. Hydrobiologia 62: 195–208.

    Google Scholar 

  • Wunsam, S. & R. Schmidt, 1995. A diatom-phosphorus Transfer function for alpine and prealpine lakes. Mem. Ist. ital. Idrobiol. 53: 85–99.

    Google Scholar 

  • Wunsam, S., R. Schmidt & R. Klee, 1995. Cyclotella-taxa (Bacillariophyceae) in lakes of the Alpine region and their relationship to environmental variables. Aquat. Sci. 57: 360–386.

    Google Scholar 

  • Zaret, T. M. & W. C. Kerfoot, 1975. Fish predation on Bosmina longirostris: bodysize selection versus visibility selection. Ecology: 232–237.

  • Zeeb, B. A., C. E. Christie, J. P. Smol, D. L. Findlay, H. J. Kling & H. J. B. Birks, 1994. Response of diatom and chrysophyte assemblages in Lake 227 sediments to experimental eutrophication. Can. J. Fish. aquat. Sci. 51: 2300–2311.

    Google Scholar 

  • Züullig, H., 1981. On the use of carotenoid stratigraphy in lake sediments for detecting past developments of phytoplankton. Limnol. Oceanogr. 26: 970–976.

    Google Scholar 

  • Züullig, H., 1989. Role of carotenoids in lake sediments for reconstructing trophic history during the late Quaternary. J. Paleolim. 2: 23–40.

    Google Scholar 

Download references