Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients - Journal of Paleolimnology
- ️Marchetto, Aldo
- ️Fri May 01 1998
References
Agbeti, M. D., 1992. Relationship between diatom assemblages and trophic variables: a comparison of old and new approaches. Can. J. Fish. aquat. Sci. 49: 1171–1175.
Agbeti, M. & M. Dickman, 1989. Use of lake fossil diatom assemblages to determine historical changes in trophic status. Can. J. Fish. aquat. Sci. 46: 1013–1021.
Anderson, N. J., 1993. Natural versus anthropogenic change in lakes: the role of the sediment record. Trends in Ecology and Evolution 8: 356–361.
Anderson, N. J., 1995. Naturally eutrophic lakes: reality, myth or myopia? Trends in Ecology and Evolution 10: 137–138.
Anderson, N. J. & B. V. Odgaard, 1994. Recent palaeolimnology of three shallow Danish lakes. Hydrobiologia 275/276: 411–422.
Anderson, N. J. & B. Rippey, 1994. Monitoring lake recovery from pointsource eutrophication: the use of diatom-inferred epilimnetic total phosphorus and sediment chemistry. Freshwat. Biol. 32: 625–639.
Anderson, N. J., B. Rippey & C. E. Gibson, 1993. A comparison of sedimentary and diatom-inferred phosphorus profiles: implications for defining predisturbance nutrient conditions. Hydrobiologia 253: 357–366.
Bayerisches Landesamt füur Wasserwirtschaft (ed.), 1993. Biologische Trophieindikation im Litoral von Seen. Materialien 31: 1–173.
Bennion, H., 1994. A diatom-phosphorus transfer function for shallow, eutrophic ponds in southeast England. Hydrobiologia 275/276: 391–410.
Bennion, H., S. Wunsam & R. Schmidt, 1995. The validation of diatom-phosphorus transfer functions: an example from Mondsee, Austria. Freshwat. Biol. 34: 271–283.
Bennion, H., T. E. H. Allott, D. T. Monteith, C. A. Duigan, E. Y. Haworth, N. J. Anderson & S. Juggins, 1996a. The Anglesey lakes, Wales, UK: changes in trophic status of three standing waters as inferred from diatom transfer functions and their implications for conservation. Aquatic Conservation: Marine and Freshwater Ecosystems 6: 81–92.
Bennion, H., S. Juggins & N. J. Anderson, 1996b. Predicting epilimnetic phosphorus concentrations using an improved diatom-based transfer function and its application to lake eutrophication management. Envir. Sci. Technol. 30: 2004–2007.
Birks, H. H., 1980. Plant macrofossils in Quaternary lake sediments. Archiv füur Hydrobiologie Beiheft, 15: 1–60.
Birks, H. J. B., 1994. The importance of pollen and diatom taxonomic precision in quantitative palaeoenvironmental reconstructions. Rev. Palaeobot. Palynol. 83: 107–117.
Birks, H. J. B., 1995. Quantitative palaeoenvironmental reconstructions. In Maddy, D. & J. S. Brew (eds), Statistical modelling of Quaternary science data. Technical Guide 5, Quat. Res. Assoc., Cambridge: 161–254.
Bos, D. G., 1996. Cladocera and anostraca as paleolimnological indicators of lake-water conductivity. M. Sci. Thesis, Queen's University, Kingston: 73 pp.
Bos, D. G., B. F. Cumming, C. E. Watters & J. P. Smol, 1996. The relationship between zooplankton, conductivity and lake-water ionic composition in 111 lakes from the Interior Plateau of British Columbia, Canada. Int. J. Salt Lake Res. 5: 1–15.
Boucherle, M. M.&H. Züullig, 1983. Cladoceran remains as evidence of change in trophic state in three Swiss lakes. Hydrobiologia 103: 141–146.
Bradbury, J. P., 1975. Diatom stratigraphy and human settlement in Minnesota. Geol. Soc. Am. Spec. 171: 1–69.
Brenner, M. & M. W. Binford, 1988. Relationship between concentration of sedimentary variables and trophic state in Florida lakes. Can. J. Fish. aquat. Sci. 45: 294–300.
Brooks, J. L. & S. I. Dodson, 1965. Predation, body size, and composition of plankton. Science 150: 28–35.
Brundin, L., 1956. Die bodenfaunistischen Seetypen und ihre Anwendung auf die Süudhalbkugel. Rep. Inst. Freshwat. Res. Drottningholm 37: 186–235.
Carney, H. J., 1982. Algal dynamics and trophic interactions in the recent history of Frains Lake, Michigan. Ecology 63: 1814–1826.
Carney, H. J. & C. D. Sandgren, 1983. Chrysophycean cysts: indicators of eutrophication in the recent sediments of Frains Lake, Michigan, USA. Hydrobiologia 101: 195–202.
Catalan, J. & E. J. Fee, 1994. Interannual variability in limnic ecosystems: origin, patterns, and predictability. In Margalef, R. (ed.), Limnology now: a paradigm of planetary problems. Elsevier Science B.V. 81–97.
Christie, C. E. & J. P. Smol, 1993. Diatom assemblages as indicators of lake trophic status in southeastern Ontario lakes. J. Phycol. 29: 575–586.
Crisman, T. L. & D. R. Whitehead, 1978. Paleolimnological studies on small New England (USA) ponds. Part II. Cladoceran community response to trophic oscillations. Pol. Arch. Hydrobiol. 25: 75–86.
Cronberg, G., 1986. Chrysophycean cysts and scales in lake sediments: a review. In Kristiansen, J. & R. A. Andersen (eds), Chrysophytes: aspects and problems, Cambridge University Press, Cambridge: 281–315.
Cronberg, G. & C. D. Sandgren. 1986. A proposal for the development of standardized nomenclature and terminology for chrysophycean statospores. In Kristiansen, J. & R. A. Andersen (eds), Chrysophytes: aspects and problems, Cambridge University Press, Cambridge: 317–328.
Cumming, B. F., J. P. Smol & H. J. B. Birks, 1991. The relationship between sedimentary chrysophyte scales (Chrysophyceae and Synurophyceae) and limnological characteristics in 25 Norwegian lakes. Nord. J. Bot., 11: 231–242.
Cumming, B. F., S. E. Wilson & J. P. Smol. 1993. Paleolimnological potential of chrysophyte cysts and scales, and sponge spicules as indicators of lake salinity. Int. J. Salt Lake Res. 2: 87–92.
De Wolf, H., 1982. Method of coding of ecological data from diatoms for computer utilization. Med. Rijks Geol. Dienst 36: 95–98.
Dixit, S. S. & J. P. Smol, 1994. Diatoms as indicators in the environmental monitoring and assessment program-surface waters (EMAPSW). Environmental Monitoring and Ass. 31: 275–306.
Duff, K. E. & J. P. Smol. 1991. Morphological description and stratigraphic distributions of the chrysophycean stomatocysts from a recently acidified lake (Adirondack Park, N.Y.). J. Paleolim. 5: 73–113.
Duff, K. E., B. A. Zeeb & J. P. Smol, 1995. Atlas of Chrysophycean cysts. Kluwer Academic Press, Dordrecht, The Netherlands, 189 pp.
Engstrom, D. R., E. B. Swain & J. C. Kingston, 1985. A palaeolimnological record of human disturbance from Harvey' Lake, Vermont: geochemistry, pigments and diatoms. Freshwat. Biol. 15: 261–288.
Facher, E. & R. Schmidt, 1996. A siliceous chrysophycean cystbased pH transfer function for Central European lakes. J. Paleolim. 16: 275–321.
Forsberg, C. & S.O. Ryding, 1980. Eutrophication parameters and trophic indices in 30 Swedish wastereceiving lakes. Arch. Hydrobiol. 89: 189–207.
Frey, D. G., 1969. Evidence for eutrophication from remains of organisms in sediments. In Eutrophication: Causes, consequences, correctives. Academy of Natural Sciences, Washington D.C.: 594–613.
Frey, D. G., 1988. Littoral and offshore communities of diatoms, cladocerans and dipterous larvae, and their interpretation in paleolimnology. J. Paleolim. 1: 179–191.
Fritz, S. C., J. C. Kingston & D. R. Engstrom, 1993. Quantitative trophic reconstruction from sedimentary diatom assemblages: a cautionary tale. Freshwat. Biol. 30: 1–23.
Gibson, C. E., R. H. Foy & A. E. Bailey-Watts, 1996. An analysis of the total phosphorus cycle in some temperate lakes: the response to enrichment. Freshwat. Biol. 35: 525–532.
Günther, J., 1983. Development of Grossensee (Holstein, Germany): variations in trophic status from the analysis of subfossil microfauna. Hydrobiologia 103: 231–234.
Håkanson, L., 1992. Considerations on representative water quality data. Int. Revue ges. Hydrobiol., 77: 497–505.
Hall, R. I. & J. P. Smol, 1992. A weighted-averaging regression and calibration model for inferring total phosphorus concentration from diatoms in British Columbia (Canada) lakes. Freshwat. Biol. 27: 417–434.
Hall, R. I. & J. P. Smol, 1996. Paleolimnological assessment of longterm water-quality changes in south-central Ontario lakes affected by cottage development and acidification. Can. J. Fish. aquat. Sci. 53: 1–17.
Harmsworth, R. V. & M. C. Whiteside, 1968. Relation of cladoceran remains in lake sediments to primary productivity of lakes. Ecology 49: 998–1000.
Hill, M. O., 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54: 427–432.
Hofmann, G., 1994.Aufwuchs Diatomeen in Seen und ihre Eignung als Indikatoren der Trophie. Bibliotheca Diatomologica 30: 1–241.
Hofmann, W., 1971. Die postglaziale Entwicklung der Chironomidenund ChaoborusFauna (Dipt.) des Schöohsees. Arch. Hydrobiol. 40: 1–74.
Hofmann, W., 1986a. Developmental history of the Großer Plöoner See and the Schöohsee (north Germany): cladoceran analysis, with special reference to eutrophication. Arch. Hydrobiol. 74: 259–287.
Hofmann, W., 1986b. Chironomid Analysis. In Berglund, B. E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. J. Wiley & Sons, Chichester: 715–727.
Hofmann, W., 1987. Cladocera in space and time: analysis of lake sediments. Hydrobiologia 145: 315–321.
Hofmann, W., 1988. The significance of chironomid analysis (Insecta: Diptera) for paleolimnological research. Palaeogeogr., Palaeoclimatol., Palaeoecol. 62: 501–509.
Hofmann, W., 1990. Sukzession der Cladocerenund Chironomidenfauna im Späatund Postglazial als Reaktion auf ÄAnderungen des Trophiegrades im Untersee (Kern US 8707). Ber. Röom.German. Kommission 71: 286–292.
Hofmann, W., 1996. Empirical relationships between cladoceran fauna and trophic state in thirteen northern German lakes: analysis of surficial sediments. Hydrobiologia 318: 195–201.
Hofmann, W. Late-Glacial/Holocene succession of the chironomid and cladoceran fauna of Soppensee (Central Switzerland). J. Paleolim. submitted.
Huisman, J., H. Olff & L. F. M. Fresco, 1993. A hierarchical set of models for species response models. J. Veg. Sci. 4: 37–46.
Jeppesen, E., E. A. Madsen, J. P. Jensen & N. J. Anderson, 1996. Reconstructing the past density of planktivorous fish and trophic structure from sedimentary zooplankton fossils: a surface sediment calibration data set from shallow lakes. Freshwat. Biol. 36: 115–127.
Jonasson, P. M., 1969. Bottom fauna and eutrophication. Eutrophication: causes, consequences and correctives. National Academy of Sciences, Washington D.C.: 274–305.
Kansanen, P. H., 1985. Assessment of pollution history from recent sediments in Lake Vanajavesi, southern Finland. II. Changes in the Chironomidae, Chaoboridae and Ceratopogonidae (Diptera) fauna. Ann. Zool. Fenn. 22: 57–90.
Keating, K. I., 1978. Blue-green algal inhibition of diatom growth: transition from mesotrophic to eutrophic community structure. Science 199: 971–973.
Kerfoot, W. C., 1978. Combat between copepods and their prey: Cyclops, Epischura and Bosmina. Limnol. Oceanogr. 23: 1098–1103.
Kilham, P., S. S. Kilham & R. E. Hecky, 1986. Hypothesized resource relationship among African planktonic diatoms. Limnol. Oceanogr. 31: 1169–1181.
Kilham, S. S., E. C. Theriot & S. C. Fritz, 1996. Linking planktonic diatoms and climate in the large lakes of the Yellowstone ecosystem using resource theory. Limnol. Oceanogr. 41: 1052–1062.
Kolkwitz, R., 1950. ÖOkologie der Saprobien. Über die Beziehungen der Wasserorganismen zur Umwelt. Schriftenreihe Verein für Wasser, Bodenund Lufthygiene 4: 64 pp.
Korhola, A., 1990. Paleolimnology and hydroseral development of the Kotasuo bog, southern Finland, with special reference to the Cladocera. Ann. Acad. Sci. Fenn. Ser. A 155: 1–40.
Krause-Dellin, D. & C. Steinberg, 1986. Cladocera remains as indicators of lake acidification. Hydrobiologia 143: 129–134.
Krause, W., 1981. Characeen als Bioindikatoren f üur den Gewäasserzustand. Limnologica 13: 399–418.
Lange-Bertalot, H., 1978. Diatomeen-Differentialarten anstelle von Leitformen: Ein geeignetes Kriterium der Gewäasserbelastung. Arch. Hydrobiol. 51: 393–427.
Lange-Bertalot, H., 1979. Pollution tolerance of diatoms as a criterion for water quality estimation. Nova Hedwigia Beiheft 64: 285–304.
Likens, G. E., 1972. Eutrophication and aquatic ecosystems. In Likens, G. E. (ed.), Nutrients and eutrophication: the limitingnutrient controversy. ASLO, Lawrence, Kansas: 3–13.
Lindegaard, C., 1995. Classification of waterbodies and pollution. In Armitage, P. D., P. S. Cranston & L. C. V. Pinder (eds), The Chironomidae: Biology and ecology of nonbiting midges. Chapman & Hall, London. 385–404.
Lotter, A., 1988. Paläaoöokologische und paläaolimnologische Studie des Rotsees bei Luzern. Pollen-, grossrest-, diatomeen-und sedimentanalytische Untersuchungen. Diss. Bot. 124: 1–187.
Lotter, A. F., 1989. Subfossil and modern diatom plankton and the paleolimnology of Rotsee (Switzerland) since 1850. Aquat. Sci. 51: 338–350.
Lotter, A. F. The recent eutrophication of Baldeggersee (Switzerland) as assessed by fossil diatom assemblages. The Holocene, in press.
Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1997a Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. J. Paleolim. 18: 395–420.
Lotter, A. F., M. Sturm, J. L. Teranes & B. Wehrli, 1997b. Varve formation since 1885 and high-resolution varve analyses in hypertrophic Baldeggersee (Switzerland). Aquatic Sciences 59: in press.
Lowe, R., 1974. Environmental requirements and pollution tolerances of freshwater diatoms. EPA6701474005, US EPA.
Lund, J.W. G., 1969. Phytoplankton. Eutrophication: causes, consequences, correctives. National Academy of Sciences, Washington D.C.: 306–330.
Maberly, S. C., M.A. Hurley, C. Butterwick, J. E. Corry, S. I. Heaney, A. E. Irish, G. H. M. Jaworski, J. W. G. Lund, C. S. Reynolds & J. V. Roscoe, 1994. The rise and fall of Asterionella formosa in the south basin of Windermere: analysis of a 45year series of data. Freshwat. Biol. 31: 19–34.
Marchetto, A. & A. Lami, 1994. Reconstruction of pH by chrysophycean scales in some lakes of the southern Alps. Hydrobiologia 274: 83–90.
Müuller, B., A. F. Lotter, M. Sturm & A. Ammann, The influence of catchment and geographic location on the water and sediment composition of 68 small circumalpine lakes. Aquatic Sciences, in press.
Nygaard, G., 1956. Ancient and recent flora of diatoms and Chrysophycea in Lake GribsØo. Folia Limnologica Scandinavica 8: 50–62.
OCDE, 1982. Eutrophisation des eaux. Méethodes de surveillance, d'éevaluation et de lutte. OCDE, Paris.
Olander, H., A. Korhola & T. Blom, 1997. Surface sediment Chironomidae (Insecta: Diptera) distributions along an ecotonal transect in subarctic Fennoscandia: developing a tool for palaeotemperature reconstructions. J. Paleolim. 18: 45–59.
Prentice, I. C., 1980. Multidimensional scaling as a research tool in Quaternary palynology: a review of theory and methods. Rev. Palaeobot. Palynol. 31: 71–104.
Quinlan, R., J. P. Smol & R. I. Hall, Quantitative inferences of past hypolimnetic anoxia in south-central Ontario lakes using fossil midges (Diptera: Chironomidae). Can. J. Fish. aquat. Sci., in press.
Rast, W. & M. Holland, 1988. Eutrophication of lakes and reservoirs: a framework for making management decisions. Ambio 17: 2–12.
Reavie, E. D., R. I. Hall & J. P. Smol, 1995. An expanded weighted-averaging model for phosphorus concentrations from diatom assemblages in eutrophic British Columbia (Canada) lakes. J. Paleolim. 14: 49–67.
Rippey, B. & N. J. Anderson, 1996. Reconstruction of lake phosphorus loading and dynamics using the sedimentary record. Envir. Sci. Technol. 30: 1786–1788.
Rosen, G., 1981. Phytoplankton indicators and their relations to certain chemical and physical factors. Limnologica 13: 263–290.
Rybak, M., I. Rybak & K. Nicholls. 1991. Sedimentary chrysophycean cyst assemblages as paleoindicators in acid sensitive lakes. J. Paleolim. 5: 19–72.
Sæaether, O. A., 1979. Chironomid communities as water quality indicators. Holarctic Ecology, 2: 65–74.
Sæaether, O. A., 1980. The influence of eutrophication on deep lake benthic invertebrate communities. Prog.Water Technol. 12: 161–180.
Salden, N., 1978. Beitrag zur ÖOkologie der Diatomeen (Bacillariophyceae) des Süusswassers. Dechenia Beihefte 22: 1–238.
Sanders, R.W., K. G. Porter & R. J. McDomough. 1985. Bacterivory by ciliates, microflagellates and mixotrophic algae: factors influencing particle ingestion. EOS, 66: 1314.
Sandgren, C. D., 1981. Characteristics of sexual and asexual resting cyst (statospore) formation in Dinobryon cylindricum Imhof (Chrysophyceae, Chrysophicota). Protistologica 16: 259–276.
Sandgren, C. D., 1983. Morphological variability in populations of chrysophycean resting cysts. I. Genetic (interclonal) and encystment temperature effects on morphology. J. Phycol. 19: 64–70.
Sandgren, C. D., 1988. The ecology of chrysophyte flagellates: their growth and perennation strategies as freshwater phytoplankton. In Sandgren, C. D. (ed.), Growth and reproductive strategies of freshwater phytoplankton. Cambridge University Press, Cambridge: 9–104.
Schelske, C. L., D. J. Conley, E. F. Stoermer, T. L. Newberry & C. D. Campbell, 1986. Biogenic silica and phosphorus accumulation in sediments as indices of eutrophication in the Laurentian Great Lakes. Hydrobiologia 143: 79–86.
Schindler, D. W., 1987. Detecting ecosystem response to anthropogenic stress. Can. J. Fish. aquat. Sci. 44: 6–25.
Schmäah, A., 1993. Variation among fossil chironomid assemblages in surficial sediments of Bodensee-Untersee (SWGermany): implications for paleolimnological interpretation. J. Paleolim. 9: 99–108.
Smol, J. P., 1985. The ratio of diatom frustules to chrysophycean statospores: a useful paleolimnological index. Hydrobiologia 123: 199–208.
Smol, J. P., 1995. Application of Chrysophytes to problems in paleoecology. In Sandgren, C., J. P. Smol & J. Kristiansen (eds), Chrysophyte algae: Ecology, Phylogeny and Development. Cambridge University Press, Cambridge: 303–329.
Stenson, J. A. E., 1976. Significance of predator influence on composition of Bosmina spp. populations. Limnol. Oceanogr. 21: 814–822.
Stockner, J. G., 1971. Preliminary characterization of lakes in the Experimental Lakes Area, Northwestern Ontario, using diatom occurrences in sediments. J. Fish. Res. Bd Canada 28: 265–275.
Stockner, J. G. & W. W. Benson, 1967. The succession of diatom assemblages in the recent sediments of Lake Washington. Limnol. Oceanogr. 12: 513–532.
Synerholm, C. C., 1979. The chydorid cladocera fauna from surface lake sediments inMinnesota and North Dakota. Arch. Hydrobiol. 86: 137–151.
Tarapchak, S. J. & C. Nalewajko, 1986. Synopsis: phosphorus – plankton dynamics symposium. Can. J. Fish. aquat. Sci. 43: 416–419.
ter Braak, C. J. F., 1987–1992. CANOCO – a FORTRAN program for canonical community ordination. Microcomputer Power, Ithaca, New York: 95 pp.
ter Braak, C. J. F., 1990. Update notes: CANOCO version 3.10. Agricultural Mathematics Group, Wageningen.
ter Braak, C. J. F. & S. Juggins, 1993. Weighted averaging partial least squares regression (WA–PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269/270: 485–502.
ter Braak, C. J. F., S. Juggins, H. J. B. Birks & H. van der Voet, 1993. Weighted averaging partial least squares regression (WAPLS): definition and comparison with other methods for species environment calibration. In Patil, G. P. & C. R. Rao (eds), Multivariate Environmental Statistics. Elsevier: 525–560.
ter Braak, C. J. F. & P. F. M. Verdonschot, 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat. Sci. 57: 255–289.
Tilman, D., R. Kiesling, R. Sterner, S. S. Kilham & F. A. Johnson, 1986. Green, bluegreen and diatom algae: taxonomic differences in competitive ability for phosphorus, silicon and nitrogen. Arch. Hydrobiol. 106: 473–485.
van Dam, H., A. Mertens & J. Sinkeldam, 1994. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Neth. J. aquat. Ecol. 28: 117–133.
Vollenweider, R. W., 1950. ÖOkologische Untersuchungen von planktischen Algen auf experimenteller Grundlage. Schweiz. Z. Hydrol. 12: 193–262.
Walker, I. R., 1995. Chironomids as indicators of past environmental change. In Armitage, P. D., P. S. Cranston & L. C. V. Pinder (eds), The Chironomidae: Biology and Ecology of Nonbiting Midges. Chapman & Hall, London: 405–422.
Walker, I. R., J. P. Smol, D. R. Engstrom & H. J. B. Birks, 1991. An assessment of Chironomidae as quantitative indicators of past climatic change. Can. J. Fish. aquat. Sci. 48: 975–987.
Walker, I. R., E. D. Reavie, S. Palmer & R. N. Nordin, 1993. A palaeoenvironmental assessment of human impact on Wood Lake, Okanagan Valley, British Columbia, Canada. Quat. Int. 20: 51–70.
Walker, I. R., S. E. Wilson & J. P. Smol, 1995. Chironomidae (Diptera): quantitative palaeosalinity indicators for lakes of western Canada. Can. J. Fish. aquat. Sci. 52: 950–960.
Warwick, W. F., 1980. Paleolimnology of the Bay of Quinte, Lake Ontario: 2800 years of cultural influence. Can. Bull. Fish. aquat. Sci. 206: 1–117.
Whitmore, T. J., 1989. Florida diatom assemblages as indicators of trophic state and pH. Limnol. Oceanogr. 34: 882–895.
Whiteside, M. C., 1969. Chydorid (Cladocera) remains in surficial sediments of Danish lakes and their significance to paleolimnological interpretations. Mitt. Int. Ver. Limnol. 17: 193–201.
Whiteside, M. C., 1970. Danish chydorid cladocera: modern ecology and core studies. Ecological Monographs 40: 79–118.
Whiteside, M. C., 1983. The mythical concept of eutrophication. Hydrobiologia 103: 107–111.
Wiederholm, T., 1980. Use of benthos in lake monitoring. J. Wat. Pollut. Control Federation 52: 537–547.
Wiederholm, T., 1984. Responses of aquatic insects to environmental pollution. In Resh, V. H. & D. M. Rosenberg (eds), The Ecology of Aquatic Insects. Praeger, New York: 508–557.
Wiederholm, T. & L. Eriksson, 1979. Subfossil chironomids as evidence of eutrophication in Ekoln Bay, central Sweden. Hydrobiologia 62: 195–208.
Wunsam, S. & R. Schmidt, 1995. A diatom-phosphorus Transfer function for alpine and prealpine lakes. Mem. Ist. ital. Idrobiol. 53: 85–99.
Wunsam, S., R. Schmidt & R. Klee, 1995. Cyclotella-taxa (Bacillariophyceae) in lakes of the Alpine region and their relationship to environmental variables. Aquat. Sci. 57: 360–386.
Zaret, T. M. & W. C. Kerfoot, 1975. Fish predation on Bosmina longirostris: bodysize selection versus visibility selection. Ecology: 232–237.
Zeeb, B. A., C. E. Christie, J. P. Smol, D. L. Findlay, H. J. Kling & H. J. B. Birks, 1994. Response of diatom and chrysophyte assemblages in Lake 227 sediments to experimental eutrophication. Can. J. Fish. aquat. Sci. 51: 2300–2311.
Züullig, H., 1981. On the use of carotenoid stratigraphy in lake sediments for detecting past developments of phytoplankton. Limnol. Oceanogr. 26: 970–976.
Züullig, H., 1989. Role of carotenoids in lake sediments for reconstructing trophic history during the late Quaternary. J. Paleolim. 2: 23–40.