link.springer.com

IGF-I: An Essential Factor in Terminal End Bud Formation and Ductal Morphogenesis - Journal of Mammary Gland Biology and Neoplasia

  • ️Ruan, Weifeng
  • ️Sat Jan 01 2000

Access this article

Log in via an institution

Subscribe and save

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. W. Ruan, C. B. Newman, and D. L. Kleinberg (1992). Intact and aminoterminally shortened forms of insulin-like growth factor I induce mammary gland differentiation and developinsulin-ment. Proc. Natl. Acad. Sci. U.S.A. 89:10872–10876.

    Google Scholar 

  2. R. P. Reece, C. W. Turner, and R. T. Hill (1936). Mammary gland development in the hypophysectomized albino rat. Proc. Soc. Exp. Biol. Med. 34:204–217.

    Google Scholar 

  3. W. U. Gardner, and A. White (1941). Mammary growth in hypophysectomized male mice receiving estrogen prolactin. Proc. Soc. Exp. Biol. Med. 48:590–592.

    Google Scholar 

  4. A. A. Lewis, E. T. Gomez, and C.W. Turner (1942). Mammary gland development with mammogen I in the castrated and the hypophysectomized rat. Endocrinology 30:37–47.

    Google Scholar 

  5. W. R. Lyons, C. H. Li, and R. E. Johnson (1958). The hormonal control of mammary growth and lactation. Rec. Prog. Horm. Res. 14:219–248.

    Google Scholar 

  6. S. Nandi (1958). Endocrine control of mammary-gland develgenesis opment and function in the C3 11/HE Crgl mouse. J. Natl. Cancer Inst. 21(6):1039–1062.

    Google Scholar 

  7. W. R. Lyons (1993). Hormonal synergism in mammary growth. Proc Royal Soc. (London) 149:303–325.

    Google Scholar 

  8. W. R. Lyons, R. E. Johnson, R. D. Cole, and C. H. Li (1955). Mammary growth and lactation in male rats. In R. W. Smith, O. H. Gaebler, and C. N. H. Long, (eds.), The Hypophyseal Growth Hormone, Nature and Actions, New York, McGraw Hill, pp. 461–472.

    Google Scholar 

  9. D. L. Kleinberg, W. Niemann, E. Flamm, P. Cooper, G. Babit-sky, and Q. Valensi (1985). Primate mammary development: Effects of hypophysectomy, prolactin inhibition and growth hormone administration. J. Clin. Invest. 75:1943–1950.

    Google Scholar 

  10. D. L. Kleinberg, W. F. Ruan, V. Catanese, C. B. Newman, and M. Feldman (1990). Nonlactogenic effects of growth hormone on growth and insulin-like growth factor-I messenger ribonucleic acid of rat mammary gland. Endocrinology 126: 3274–3276.

    Google Scholar 

  11. D. L. Kleinberg (1997). Early mammary development: Growth hormone and IGF-1. J. Mam. Gland Biol. Neoplasia 2:49–57.

    Google Scholar 

  12. M. Feldman, W. Ruan, B. C. Cunningham, J. A. Wells, and D. L. Kleinberg (1993). Evidence that the growth hormone receptor mediates differentiation and development of the mamevidence mary gland. Endocrinology 133:1602–1608.

    Google Scholar 

  13. Y. N. Ilkbahar, G. Thordarson, I. G. Camarillo, and F. Tala-mantes (1999). Differential expression of the growth hormone receptor and growth hormone-binding protein in epithelia and stroma of the mouse mammary gland at various physiological stages. J. Endocrinol. 161:77–87.

    Google Scholar 

  14. C. W. Daniel and G. B. Silberstein (1987). Postnatal develop-ment of the rodent mammary gland. In M. C. Neville and C.W. Daniel, (eds.), The Mammary Gland: Development, Regulation, and Function, New York, Plenum Press, pp. 1–36.

    Google Scholar 

  15. D. Medina (1996). The mammary gland: A unique organ for the study of development and tumorigenesis. J. Mam. Gland Biol. Neoplasia 1:5–19.

    Google Scholar 

  16. C. B. Newman, H. Cosby, H. G. Friesen, M. Feldman, P. Cooper, V. DeCrescito, M. Pilon, and D. L. Kleinberg (1987). Evidence for a nonprolactin, nongrowth hormone mammary mitogen in the human pituitary gland. Proc. Natl. Acad. Sci. U.S.A. 84:8110–8114.

    Google Scholar 

  17. W. Ruan, V. Catanese, R. Wieczorek, M. Feldman, and D. L. Kleinberg (1995). Estradiol enhances the stimulatory effect of insulin-like growth factor-I (IGF-I) on mammary development and growth hormone-induced IGF-I messenger ribonucleic acid. Endocrinology 136:1296–1302.

    Google Scholar 

  18. M. M. Richert and T. L. Wood (1999). The Insulin-like growth factors (IGF) and the IGF Type I receptor during postnatal growth of the murine mammary gland: Sites of messenger ribonucleic acid expression and potential functions. Endocri-nology 140:454–461.

    Google Scholar 

  19. D. L. Kleinberg and W. Ruan (1999). The crucial roles of developinsulin-like growth factor I and growth hormone in mammary gland development. In D. LeRoith (ed), Advances in Molecular and Cellular Endocrinology, Stamford, JAI Press Inc. pp. 225–238.

    Google Scholar 

  20. R. C. Hovey, H. W. Davey, D. D. S. Mackenzie, and T. B. McFadden (1998). Ontogeney and epithelial-stromal interac-tions regulate IGF expression in the ovine mammary gland. Mol. Cell Endocrinol. 136:139–144.

    Google Scholar 

  21. P. D. Walden, W. F. Ruan, M. Feldman, and D. L. Kleinberg (1998). Evidence that the mammary gland fat pad mediates the action of growth hormone in mammary gland development. Endocrinology 139:659–662.

    Google Scholar 

  22. W. Ruan and D. L. Kleinberg (1999). Insulin-like growth factor-I is essential for terminal end bud formation and ductal morpho-develgenesis during mammary development. Endocrinology 140: 5075–5081, 1999.

    Google Scholar 

  23. R. C. Humphreys, J. Lydon, B. W. O'Malley, and J. M. Rosen (1997). Mammary gland development is mediated by both stromal and epithelial progesterone receptors. Mol. Endocri-nol. 11:801–811.

    Google Scholar 

  24. R. C. Humphreys, J. P. Lydon, B.W. O'Malley, and J. M. Rosen (1997). Use of PRKO mice to study the role of progesterone in mammary gland development. J. Mam. Gland Biol. Neopla-sia 2:343–354.

    Google Scholar 

  25. S. Coleman, G. B. Silberstein, and C.W. Daniel (1988). Ductal morphogenesis in the mouse mammary gland: Evidence supporting a role for epidermal growth factor. Dev. Biol. 127: 304–315.

    Google Scholar 

  26. S. Z. Haslam and G. Shyamala (1981). Relative distribution of estrogen and progesterone receptors among epithelial, adipose, and connective tissue components of the normal mammary gland. Endocrinology 108:825–830.

    Google Scholar 

  27. S. Z. Haslam and K. A. Nummy (1992). The ontogeny and cellular disltribution of estrogen receptors in normal mouse mammary gland. J. Steroid Biochem. Molec. Biol. 42:589–595.

    Google Scholar 

  28. G. B. Silberstein, K. Van Horn, G. Shyamala, and C.W. Daniel (1994). Essential role of endogenous estrogen in directly stimu-lating mammary growth demonstrated by implants containing pure antiestrogens. Endocrinology 134:84–90.

    Google Scholar 

  29. M. Feldman, W. Ruan, I. Tappin, R. Wieczorek, and D. L. Kleinberg (1999). The effect of GH on estrogen receptor expression in the rat mammary gland. J. Endocrinol. 163:515–522, 1999.

    Google Scholar 

  30. D. L. Hadsell, N. M. Greenberg, J. M. Fligger, C. R. Baumrucker, and J. M. Rosen (1996). Targeted expression of des(1–3) human insulin-like growth factor I (IGF-I) in transgenic mice influences mammary gland development and IGF-binding protein expression. Endocrinology 136:321–330.

    Google Scholar 

  31. S. Neuenschwander, A. Schwartz, T. L. Wood, C. T. J. Roberts, L. Henninghausen, and D. LeRoith (1996). Involution of the lactating mammary gland is inhibited by the IGF system in a transgenic mouse model. J. Clin. Invest. 97:2225–2232.

    Google Scholar 

Download references