Clearance: The Last and Often Forgotten Stage of Apoptosis - Journal of Mammary Gland Biology and Neoplasia
- ️Fadok, Valerie A.
- ️Thu Apr 01 1999
REFERENCES
J. F. R. Kerr, A. H. Wyllie, and A. R. Currie (1972). Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Brit. J. Cancer 26:239–257.
A. H. Wyllie, J. F. R. Kerr, and A. R. Currie (1980). Cell death: The significance of apoptosis. Int. Rev. Cytol. 68:251–306.
M. J. Arends and A. H. Wyllie (1991). Apoptosis: Mechanisms and roles in pathology. Int. Rev. Exp. Pathol. 32:223–254.
J. J. Cohen, R. C. Duke, V. A. Fadok, and K. S. Sellins (1992). Apoptosis and programmed cell death in immunity. Ann. Rev. Immunol. 10:267–293.
M. C. Raff (1992). Social controls on cell survival and cell death. Nature 356:397–400.
N. I. Walker, R. E. Bennett, and J. F. R. Kerr (1989). Cell death by apoptosis during involution of the lactating breast in mice and rats. Am. J. Anat. 185:19–32.
R. Strange, L. Feng, S. Saurer, A. Burkhardt, and R. R. Friis (1992). Apoptotic cell death and tissue remodeling during mouse mammary gland involution. Development 115:49–58.
W. Bielke, G. Ke, Z. Feng, S. Bhurer, S. Saurer, and R. R. Friis (1997). Apoptosis in the rat mammary gland and ventral prostate: Detection of cell death-associated genes using a coincident-expression cloning approach. Cell Death Differ. 4: 114–124.
L. R. Lund, J. Romer, N. Thomasset, H. Solberg, C. Pyke, M. J. Bissell, K. Dane, and Z. Werb (1996). Two distinct phases of apoptosis in mammary gland involution: Proteinase-independent and-dependent pathways. Development 122: 181–193.
R. S. Guenette, H. B. Corbeil, J. Leger, K. Wong, V. Mezl, M. Mooibroek, and M. Tenniswood, (1994). Induction of gene expression during involution of the lactating mammary gland of the rat. J. Mol. Endocrinol. 12:47–60.
G. R. Merlo, N. Cella, and N. E. Hynes (1997). Apoptosis is accompanied by changes in bcl-2 and bax expression, induced by loss of attachment, and inhibited by specific extracellular matrix proteins in mammary epithelial cells. Cell Growth Differ. 8:251–260.
C. S. Atwood, M. Ikeda, and B. K. Vonderhaar (1995). Involution of mouse mammary glands in whole organ culture: A model for studying programmed cell death. Biochem. Biophys. Res. Commun. 207:860–867.
J. Savill (1997). Recognition and phagocytosis of cell undergoing apoptosis. Br. Med. Bull. 53:491–508.
Y. Ren and J. Savill (1998). Apoptosis: The importance of being eaten. Cell Death Differ. 5:563–568.
V. A. Fadok and P. M. Henson (1998). Apoptosis: Getting rid of the bodies. Curr. Biol. 8:R693–R695.
R. E. Voll, M. Herrmann, E. A. Roth, C. Stach, and J. R. Kalden (1997). Immunosuppressive effects of apoptotic cells. Nature 390:350–351.
V. A. Fadok, D. L. Bratton, A. Konowal, P. W. Freed, J. Y. Westcott, and P. M. Henson (1998). Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGFβ, PGE2, and PAF. J. Clin. Invest. 101:890–898.
Y. Gao, J. M. Herndon, H. Zhang, T. S. Griffith, and T. A. Ferguson (1998). Antiinflammatory effects of CD95 ligand (FasL)-induced apoptosis. J. Exp. Med. 188:887–896.
J. Ogasawara, R. Watanable-Fukunaga, M. Adachi, A. Matsuzawa, T. Kasugai, Y. Kitamura, N. Itho, T. Suda, and S. Nagata (1993). Lethal effect of the anti-Fas antibody in mice. Nature 364:806–809.
M. Herrmann, R. E. Voll, O. M. Zoller, M. Hagenhofer, B. B. Ponner, and J. R. Kalden (1998). Impaired phagocytosis of apoptotic cell material by monocyte-derived macrophages from patients with systemic lupus erythematosus. Arthritis Rheum. 41:1241–1250.
M. Botto, C. Dell' Agnola, A. E. Bygrave, E. M. Thompsonn, H. T. Cook, F. Petry, M. Loos, P. P. Pandolfi, and M. J. Walport (1998). Homozygmous C1q deficiency causes glomerulonephritis asssociated with multiple apoptotic bodies. Nat. Genet. 19:56–59.
S. L. Newman, J. E. Henson, and P. M. Henson (1982). Phagocytosis of senescent neutrophils by human monocyte-derived macrophages and rabbit inflammatory macrophages. J. Exp. Med. 156:430–442.
J. S. Savill, A. J. Wyllie, J. E. Henson, M. J. Walport, P. M. Henson, and C. Haslett (1989). Macrophage phagocytosis of aging neutrophils in inflammation. J. Clin. Invest. 83:865–875.
J. Savill, I. Dransfield, N. Hogg, and C. Haslett (1990). Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis. Nature 343:170–173.
J. Savill (1998). Phagocytic docking without shocking. Nature 392:442–443.
A. Devitt, O. D. Moffatt, C. Raykundalia, J. D. Capra, D. L. Simmons, and C. D. Gregory (1998). Human CD14 mediates recognition and phagocytosis of apoptotic cells. Nature 392:505–509.
E. Duvall, A. H. Wyllie, and R. G. Morris (1985). Macrophage recognition of cells undergoing programmed cell death (apoptosis). Immunology 56:351–358.
N. Platt, H. Suzuki, Y. Kurihara, T. Kodama, and S. Gordon (1996). Role for the class A macrophage scavenger reporter in the phagocytosis of apoptotic thymocytes in vitro. Proc. Natl. Acad. Sci. U.S.A. 93:12456–12460.
J. Savill, N. Hogg, Y. Ren, and C. Haslett (1992). Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J. Clin. Invest. 90:1513–1522.
M-F. Luciani and G. Chimini (1996). The ATP binding cassette transporter ABC1, is required for the engulfment of corpses generated by apoptotic cell death. EMBO J. 15:226–235.
V. Terpstra N. Kondratenko and S. Steinberg (1997). Macrophages lacking scavenger receptor A show a decrease in binding and uptake of acetylated low-density lipoprotein and of apoptotic thymocytes, but not of oxidatively damaged red blood cells. Proc. Natl. Acad. Sci. U.S.A. 94:8127–8131.
V. A. Fadok, J. S. Savill, C. Haslett, D. L. Bratton, D. E. Doherty, P. A. Campbell, and P. M. Henson (1992). Different populations of macrophages use either the vitronectin receptor or the phosphatidylserine receptor to recognize and remove apoptotic cells. J. Immunol. 149:4029–4035.
V. A. Fadok, D. R. Voelker, P. A. Campbell, J. J. Cohen, D. L. Bratton, and P. M. Henson (1992). Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol. 148:2207–2216.
V. A. Fadok, D. J. Laszlo, P. W. Noble, L. Weinstein, D. W. H. Riches, and P. M. Henson (1993). Particle digestibility is required for induction of the phosphatidylserine recognition mechanism used by murine macrophages to phagocytose apoptotic cells. J. Immunol. 151:4274–4285.
V. A. Fadok, M. L. Warner, D. L. Bratton, and P. M. Henson (1998). CD36 is required for phagocytosis of apoptotic cells by human macrophages which utilize either a phosphatidylserine receptor or the vitronectin receptor (αvβ3). J. Immunol. 161:6250–6257.
D. Pradhan, S. Krahling, P. Williamson, and R. A. Schlegel (1997). Multiple systems for recognition of apoptotic lymphocytes by macrophages. Mol. Biol. Cell. 8:767–778.
Y-C. Wu and H. R. Horvitz (1998). C. elegans phagocytosis and cell-migration protein CED-5 is similar to human DOCK 180. Nature 392:501–504.
Q. A. Liu and M. O. Hengartner (1998). Candidate adaptor protein CED-6 promotes the engulfment of apoptotic cells in C. elegans. Cell 93:961–972.
Y-C. Wu and H. R. Horvitz (1998). The C. elegans cell corpse engulfment gene ced-7 encodes a protein similar to ABC transporters. Cell 93:9511–960.
L. Dini, F. Autuori, A. Lentini, S. Oliverio, and M. Piacentini (1992). The clearance of apoptotic cells in the liver is mediated by the asialoglycoprotein receptor. FEBS Lett. 296:174–178.
L. Dini, A. Lentini, G. D. Diez, M. Rocha, L. Falasca, and L. Serafino F. Vidal Vanclocha (1995). Phagocytosis of apoptotic bodies by liver endothelial cells. J. Cell Sci. 108:967–973.
L. Falasca, A. Bergamini, A. Serafino, C. Balabaud, and L. Dini (1996). Human Kupffer cell recognition and phagocytosis of apoptotic peripheral blood lymphocytes. Exp. Cell Res. 224:152–162.
D. A. Mower, D. W. Peckham, V. A. Illera, J. K. Fishbaugh, L. L. Stunz, and R. F. Ashman (1994). Decreased membrane phospholipid packing and decreased cell size precede DNA cleavage in mature mouse B cell apoptosis. J. Immunol. 152:4832–4841.
G. Koopman, C. P. M. Reutelingsperger, G. A. M. Kuijten, R. M. J. Keehnen, S. T. Pals, M. H. J. van Oers (1994). Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84:1415–1420.
B. Verhoven, R. A. Schlegel, and P. Williamson (1995). Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal on apoptotic T lymphocytes. J. Exp. Med. 182: 1597–1601.
S. J. Martin, C. P. M. Reutelingsperger, A. J. McGahon, J. A. Rader, R. C. A. A. van Schie, D. M. LaFace, and D. R. Green (1995). Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: Inhibition by overexpression of bcl-2 and abl. J. Exp. Med. 182:1545–1556.
C. H. E. Homburg, M. de Haas, A. E. G. Kr. von dem Borne, A. J. Verhoeven, C. P. M. Reutelingsperger, and D. Roos (1995). Human neutrophils lose their surface FcγRIII and acquire annexin V binding sites during apoptosis in vitro. Blood 85:532–540.
D. L. Bratton, V. A. Fadok, D. A. Richter, J. M. Kailey, L. A. Guthrie, and P. M. Henson (1997). Appearance of phosphatidylserine on apoptotic cells requires calcium-mediated nonspecific flip-flop and is enhanced by the loss of the aminophospholipid translocase. J. Biol. Chem. 272:26159–26165.
I. Vermes, C. Haanen, H. Steffens-Nakken, and C. Reutelingsperger (1995). A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labeled annexin V. J. Immunol. Meth. 184:39–51.
G. Zhang, V. Gurtu, S. R. Kain, and G. Yan (1997). Early detection of apoptosis using a fluorescent conjugate of annexin V. Biotechniques 23:525–531.
P-y. Wang, R. L. Kitchens, and R. S. Munford (1998). Phosphatidylinositides bind to plasma membrane CD14 and can prevent monocyte activation by bacterial lipopolysaccharide. J. Biol. Chem. 273:24309–24313.
P. K. Flora and C. D. Gregory (1994). Recognition of apoptotic cells by human macrophages: Inhibition by a monocyte/macro — phage-specific monoclonal antibody. Eur. J. Immunol. 24: 2625–2632.
S. P. Hart, G. J. Dougherty, C. Haslett, and I. Dransfield (1997). CD44 regulates phagocytosis of apoptotic neutrophil granulocytes, but not apoptotic lymphocytes, by human macrophages. J. Immunol. 159:919–925.
D. D. Roberts, D. M. Haverstick, V. M. Dixit, W. A. Frazier, S. A. Santoro, V. Ginsburg (1985). The platelet glycoprotein thrombospondin binds specifically to sulfated glycolipids. J. Biol. Chem. 260:9405–9411.
X. Sun, D. F. Mosher, and A. Rapraeger (1989). Heparan sulfate-mediated binding of epithelial cell surface proteoglycan to thrombospondin. J. Biol. Chem. 264:2885–2889.
L. C. Korb and J. M. Ahearn (1997). C1q binds directly and specifically to surface blebs of apoptotic human keratinocytes. Complement deficiency and systemic lupus erythematosus revisited. J. Immunol. 158:4525–4528.
B. E. Price, J. Rauch, M. A. Sia, M. T. Walsh, W. Lieberthal, H. Gilligan, T. O'Laughlin, J. S. Koh, and J. S. Levine (1996). Antiphospholipid autoantibodies bind to apoptotic, but not viable, thymocytes in a β2–glycoprotein 1–dependent manner. J. Immunol. 157:2201–2208.
A. A. Manfredi, P. Rovere, G. Galati, S. Heltai, E. Bozzolo, L. Soldini, J. Davoust, G. Balestrieri, A. Tincani, and M. G. Sabbadini (1998). Apoptotic cell clearance in systemic lupus erythematosus. I. Opsonization by antiphospholipid antibodies. Arthritis Rheum. 41:205–214.
A. A. Manfredi, P. Rovere, S. Heltai, G. Galati, G. Nebbia, A. Tincani, G. Balestrieri, and M. G. Sabbadini (1998). Apoptotic cell clearance in systemic lupus erythematosus. II. Role of β2–Glycoprotein I. Arthritis Rheum. 41:215–223.
K. Balasubramanian, J. Chandra, and A. J. Schroit (1997). Immune clearance of phosphatidylserine-expressing cells by phagocytes. J. Biol. Chem. 272:31113–31117.
K. Balasubramanian, and A. J. Schroit (1998). Characterization of phosphatidylserine-dependent b2–glycoprotein I macrophage interactions. J. Biol. Chem. 273:29272–29277.
F. Takizawa, S. Tsuji, and S. Nagasawa (1996). Enhancement of macrophage phagocytosis upon iC3b deposition on apoptotic cells. FEBS Lett. 397:269–272.
D. Mevorach, J. O. Mascarenhas, D. Gershov, and K. B. Elkon (1998). Complement-dependent clearance of apoptotic cells by human macrophages. J. Exp Med. 188:2313–2320.
J. Savill, J. Smith, C. Sarraf, Y. Ren, F. Abbott, and A. Rees (1992). Glomerular mesangial cells and inflammatory macrophages ingest neutrophils undergoing apoptosis. Kidney Intl. 42:924–936.
J. Hughes, Y. Liu, J. Van Damme, and J. Savill (1997). Human glomerular mesangial cell phagocytosis of apoptotic neutrophils. Meditation by a novel CD36–independent vitronectin receptor/thrombospondin recognition mechanism that is uncoupled from chemokine secretion. J. Immunol. 158:4389–4397.
M. R. Bennet, D. F. Gibson, S. M. Schwartz, J. F. Tait (1995). Binding and phagocytosis of apoptotic vascular smooth muscle cells is mediated in part by exposure of phosphatidylserine. Circ. Res. 77:1136–1142.
A. Shiratsuchi, M. Umeda, Y. Ohba, and Y. Nakanishi (1997). Recognition of phosphatidylserin e on the surface of apoptotic spermatogenic cells and subsequent phagocytosis by Sertoli cells of the rat. J. Biol. Chem. 272:2354–2358.
S. E. Hall, J. S. Savill, P. M. Henson, C. Haslett (1994). Apoptotic neutrophils are phagocytosed by fibroblasts with participation of the fibroblast vitronectin receptor and involvement of a mannose/fucose-sp ecific lectin. J. Immunol. 153:3218–3227.
R. S. Gomez, M. Pelka, A. C. Johannessen, O. P. Hornstein, and P. von den Driesch (1997). CD36 (OKM5) antigen expression on human mucosal epithelia is associated with keratinization type. J. Dermatol. 24:435–440.
M. Simon, I. Juhasz, M. Herlyn, and J. Hunyadi (1996). Thrombospondin receptor (CD36) expression of human keratinocytes during wound healing in a SCID mouse/human skin repair model. J. Dermatol. 23:305–309.
N. Aoki, T. Ishii, S. Ohira, Y. Yamaguchi, M. Negi, T. Adachi, R. Nakamura, and T. Matsuda (1997). Stage specific expression of milk fat globule membrane glycoproteins in mouse mammary gland: Comparison of MFG-E8, butyrophilin, and CD36 with a major milk protein, beta-casein. Biochim. Biophys. Acta 1334:182–190.
L. Berglund, T. E. Petersen, and J. T. Rasmussen (1996). Structural characterization of bovine CD36 from the milk fat globule membrane. Biochim. Biophys. Acta 1309:63–68.
Z. Abbadia, E. Vericel, P. Mathevet, N. Bertin, G. Panaye, and L. Frappart (1997). Fatty acid composition and CD36 expression in breast adipose tissue of premenopausal and post-menopausal women. Anticancer Res. 17:1217–1221.
A. G. S. Baillie, C. T. Coburn, and N. A. Abumrad (1996). Reversible binding of long-chain fatty acids to purified FAT, the adipose CD36 homolog. J. Membrane Biol. 153:75–81.
I. D. Silva, A. M. Salicioni, I. H. Russo, N. A. Higgy, L. H. Gebrim, and J. Russo (1997). Tamoxifen down-regulates CD36 messenger RNA levels in normal and neoplastic human breast tissues. Cancer Res. 57:378–381.
S. W. Ryeom, J. R. Sparrow, and R. L. Silverstein (1996). CD36 participates in the phagocytosis of rod outer segments by retinal pigment epithelium. J. Cell Sci. 109:387–395.
S. W. Ryeom, R. L. Silverstein, A. Scotto, and J. R. Sparrow (1996). Binding of anionic phospholipids to retinal pigment epithelium may be mediated by the scavenger receptor CD36. J. Biol. Chem. 271:20536–20539.
L. C. Meagher, J. S. Savill, A. Baker, R. W. Fuller, and C. Haslett (1992). Phagocytosis of apoptotic neutrophils does not induce macrophage release of thromboxane B2. J. Leukocyte Biol. 52:269–273.
M. Stern, J. Savill, and C. Haslett (1996). Human monocyte-derived macrophage phagocytosis of senescent eosinophils undergoing apoptosis. Mediation by αvβ3/CD36/thrombospondin recognition mechanism and lack of phlogistic response. Am. J. Pathol. 149:911–921.
M. L. Albert, B. Sauter, and N. Bhardwaj (1998). Dendritic cells acquire antigen from apoptotic cells and induce class Irestricted CTLs. Nature 392:86–89.
P. Rovere, C. Vallinoto, A. Bondanza, M. C. Crosti, M. Rescigno, P. Ricciardi-Castagnoli, C. Rugarli, and A. A. Manfredi (1998). Cutting edge: Bystander apoptosis triggers dendritic cell maturation and antigen-presenting function. J. Immunol. 161:4467–4471.
M. Albert, S. F. A. Pearce, L. M. Francisco, B. Sauter, P. Roy, R. L. Silverstein, and N. Bhardwaj (1998). Immature dentritic cells phagocytose apoptotic cells via αvβ5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J. Exp. Med. 188:1359–1368.
Y. Ren, R. L. Silverstein, J. Allen, and J. Savill (1995). CD36 gene transfer confers capacity for phagocytosis of cells undergoing apoptosis. J. Exp. Med. 181:1857–1862.
N. C. Franc, J-L. Dimarcq, M. Lagueux, J. Hoffmann, and R. A. B. Ezekowitz (1996). Croquemort, a novel Drosophila hemocyte/macrophage receptor that recognizes apoptotic cells. Immunity 4:431–443.
T. Nakano, Y. Ishimoto, J. Kishino, M. Umeda, K. Inoue, K. Nagata, K. Ohashi, K. Mizuno, and H. Arita (1997). Cell adhesion to phosphatidylserin e mediated by a product of growth arrest-specific gene 6. J. Biol. Chem. 272:29411–29414.
P. K. Flora and C. D. Gregory (1995). Recognition pathways in the interaction of macrophages with apoptotic B cells. Leukocyte Typing 5:1675–1677.