link.springer.com

Evolution of Genome Organizations of Squirrels (Sciuridae) Revealed by Cross-Species Chromosome Painting - Chromosome Research

  • ️Yang, Fengtang
  • ️Sat May 01 2004
  • Carter NP, Ferguson-Smith ME, Affara NA, Briggs H, Ferguson-Smith MA (1990) Study of X chromosome abnormality in XX males using bivariate flow karyotype analysis and flow sorted dot blots. Cytometry 11: 202–207.

    Article  PubMed  CAS  Google Scholar 

  • Carter NP, Ferguson-Smith MA, Perryman MT et al. (1992) Reverse chromosome painting: a method for the rapid analysis of aberrant chromosomes in clinical cytogenetics. J Med Genet 29: 299–307.

    Article  PubMed  CAS  Google Scholar 

  • Chowdhary BP, Raudsepp T (2001) Chromosome painting in farm, pet and wild animal species. Methods Cell Sci 23: 37–55.

    Article  PubMed  CAS  Google Scholar 

  • Eisenburg JF (1981) The Mammalian Radiations: An Analysis of Trends in Evolution, Adaptation and Behavior. Chicago: The University of Chicago Press, pp 82–111.

    Google Scholar 

  • Graphodatsky AS, Yang F, Perelman PL et al. (2002) Comparative molecular cytogenetic studies in the order Carnivora: mapping chromosomal rearrangements onto the phylogenetic tree. Cytogenet Genome Res 96: 137–145.

    Article  PubMed  CAS  Google Scholar 

  • Gregory SG, Sekhon M, Schein J et al. (2002) A physical map of the mouse genome. Nature 418: 743–750.

    Article  PubMed  CAS  Google Scholar 

  • Grützner F, Himmelbauer H, Paulsen M, Ropers H-H, Haaf T (1999) Comparative mapping of mouse and rat chromosomes by fluorescence in situ hybridization. Genomics 55: 306–313.

    Article  PubMed  Google Scholar 

  • Hight ME, Goodman M, Prychodko W (1974) Immunological studies of the Sciuridae. Syst Zool 23: 12–25.

    Article  Google Scholar 

  • Huchon D, Madsen O, Sibbald MJJB, et al. (2002) Rodent phylogeny and a timescale for the evolution of Glires: evidence from an extensive taxon sampling using three nuclear genes. Mol Biol Evol 19: 1053–1065.

    PubMed  CAS  Google Scholar 

  • Korstanje R, O'Brien PCM, Yang F et al. (1999) Complete homology maps of the rabbit (Oryctolagus cuniculus) and human by reciprocal chromosome painting. Cytogenet Cell Genet 86: 317–322.

    Article  PubMed  CAS  Google Scholar 

  • Murphy WJ, Eizirik E, Johnson WE, Zhang YP, Ryder OA, O'Brien SJ (2001a) Molecular phylogenetics and the origins of placental mammals. Nature 409: 614–618.

    Article  PubMed  CAS  Google Scholar 

  • Murphy WJ, Stanyon R, O'Brien SJ (2001b) Evolution of mammalian genome organization inferred from comparative gene mapping. Genome Biol 2: 1–8.

    Article  Google Scholar 

  • Mercer JM, Roth VL (2003) The effects of Cenozoic global change on squirrel phylogeny. Science 299: 1568–1572.

    Article  PubMed  CAS  Google Scholar 

  • Müller S, Hollatz M, Wienberg J (2003) Chromosomal phylogeny and evolution of gibbons (Hylobatidae). Hum Genet 113: 493–501.

    Article  PubMed  Google Scholar 

  • Nadler CF (1966) Chromosomes of Spermophilus franklini and taxonomy of the ground squirrel genus Spermophilus. Syst Zool 15: 199–206.

    Article  PubMed  CAS  Google Scholar 

  • Nadler CF, Block MH (1962) The chromosomes of some North American chipmunks (Sciuridae) belonging to the genera Tamias and Eutamias. Chromosoma 13: 1–15.

    PubMed  CAS  Google Scholar 

  • Nadler CF, Hoffmann RS (1974) Chromosomes of the African ground squirrel, Xerus rutilus (Rodentia: Sciuridae). Experientia 30: 889–891.

    Article  PubMed  CAS  Google Scholar 

  • Nadler CF, Hoffmann RS, Honacki JH, Pozin D (1977) Chromosome evolution in chipmunks, with special emphasis on A and B karyotypes of the subgenus Neotamias. Am Midl Nat 98: 343–353.

    Article  Google Scholar 

  • Neusser M, Stanyon R, Bigoni F, Wienberg J, Müller S (2001) Molecular cytotaxonomy of New World monkeys (Platyrrhini)-comparative analysis of five species by multi-color chromosome painting gives evidence for a classification of Callimico goeldii within the family of Callitrichidae. Cytogenet Cell Genet 94: 206–215.

    Article  PubMed  CAS  Google Scholar 

  • Nie W, Wang J, O'Brien PCM et al. (2002) The genome phylogeny of domestic cat, red panda and five mustelid species revealed by comparative chromosome painting and G-banding. Chromosome Res 10: 209–222.

    Article  PubMed  CAS  Google Scholar 

  • Nilsson S, Helou K, Walentinsson A, Szpirer C, Nerman O, Stahl F (2001) Rat-mouse and rat-human comparative maps based on gene homology and high-resolution ZOO-FISH. Genomics 74: 287–298.

    Article  PubMed  CAS  Google Scholar 

  • Nowak RM (1999) Walker's Mammals of the World, 6th edn, Vol 2, Baltimore and London: The Johns Hopkins University Press, pp 1246–1306

    Google Scholar 

  • Ohno S (1973) Ancient linkage groups and frozen accidents. Nature 244: 259–262.

    Article  Google Scholar 

  • Oshida T, Masuda R, Yoshida MC (1996) Phylogenetic relationships among Japanese species of the family Sciuridae (Mammalia, Rodentia), inferred from nucleotide sequences of mitochondrial 12 s ribosomal RNA genes. Zool Sci 13: 615–620.

    Article  PubMed  CAS  Google Scholar 

  • Oshida T, Yanagawa H, Tsuda M, Inoue S, Yoshida MC (2000a) Comparisons of the banded karyotypes between the small Japanese flying squirrel, Pteromys momonga and the Russian flying squirrel, P. volans (Rodentia, Sciuridae). Caryologia 53: 133–140.

    Google Scholar 

  • Oshida T, Obara Y, Lin L-K, Yoshida MC (2000b) Comparison of banded karyotypes between two subspecies of the red and white giant flying squirrel Petaurista alborufus (Mammalia, Rodentia). Caryologia 53: 261–267.

    Google Scholar 

  • Oshida T, Lin L-K, Yanagawa H, Kawamichi T, Kawamichi M, Cheng V (2002) Banded karyotypes of the hairy-footed flying squirrel Belomys (Trogopterus) pearsonii (Mammalia, Rodentia) from Taiwan. Caryologia 55: 207–211.

    Google Scholar 

  • Petit D, Dutrillaux B (1985) Chromosomal phylogeny of 7 species of Sciurinae. Ann Genet 28: 13–18.

    PubMed  CAS  Google Scholar 

  • Piaggio AJ, Spicer GS (2001) Molecular phylogeny of the chipmunks inferred from mitochondrial cytochrome b and cytochrome oxidase gene sequences. Mol Phylogenet Evol 20: 335–350.

    Article  PubMed  CAS  Google Scholar 

  • Richard F, Messaoudi C, Bonnet-Garnier A, Lombard M, Dutrillaux B (2003a) Highly conserved chromosomes in an Asian squirrel (Menetes berdmorei, Rodentia: Sciuridae) as demonstrated by ZOO-FISH with human probes. Chromosome Res 11: 597–603.

    Article  PubMed  CAS  Google Scholar 

  • Richard F, Lombard M, Dutrillaux B (2003b) Reconstruction of the ancestral karyotype of eutherian mammals. Chromosome Res 11: 605–618.

    Article  PubMed  CAS  Google Scholar 

  • Robinson TJ, Elder FFB, Chapman JA (1984) Evolution of chromosomal variation in cottontails, genus Sylvilagus (Mammalia: Lagomorpha). II. Sylvilagus audubonii, S. idahoensis, S. nuttallii, and S. palustris. Cytogenet Cell Genet 38: 282–289.

    PubMed  CAS  Google Scholar 

  • Rokas A, Holland PWH (2000) Rare genomic changes as a tool for phylogenetics. Trends Ecol Evol 15: 454–459.

    Article  PubMed  Google Scholar 

  • Roth VL (1996) Cranial integration in the Sciuridae. Am Zool 36: 14–23.

    Google Scholar 

  • Scherthan H, Cremer T, Arnason U, Weier HU, Lima-de-Faria A, Frönicke L (1994) Comparative chromosome painting discloses homologous segments in distantly related mammals. Nature Genet 6: 342–347.

    Article  PubMed  CAS  Google Scholar 

  • Seabright M (1972) The use of proteolytic enzymes for the mapping of structural rearrangements in the chromosomes of man. Chromosoma 36: 204–210.

    Article  PubMed  CAS  Google Scholar 

  • Stanyon R, Stone G, Garcia M, Froenicke L (2003) Reciprocal chromosome painting shows that squirrels, unlike murid rodents, have a highly conserved genome organization. Genomics 82: 245–249.

    Article  PubMed  CAS  Google Scholar 

  • Steppan SJ, Storz BL, Hoffmann RS (2004) Nuclear DNA phylogeny of the squirrels (Mammalia, Rodentia) and the evolution of arboreality from c-myc and RAG1. Mol Phylogenet Evol 30: 703–719

    Article  PubMed  CAS  Google Scholar 

  • Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75: 304–306.

    Article  PubMed  CAS  Google Scholar 

  • Swofford DL (1998) PAUP*. Phylogenetic Analysis Using Parsimony (* and Other Methods), 4th edn. Sinauer Associates, Sunderland, Mass.

    Google Scholar 

  • Telenius H, Pelmear AH, Tunnacliffe A et al. (1992) Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes. Gene Chrom Cancer 4: 257–263.

    CAS  Google Scholar 

  • Verma RS, Babu A (1995) Human Chromosomes: Principles and Techniques, 2nd edn. New York: McGraw-Hill Inc.

    Google Scholar 

  • Viegas-Pequignot E, Koiffmann CP, Dutrillaux B (1985) Chromosomal phylogeny of Lagothrix, Brachyteles, and Cacajao. Cytogenet Cell Genet 39: 99–104.

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Carter NP, Shi L, Ferguson-Smith MA (1995) A comparative study of karyotypes of muntjacs by chromosome painting. Chromosoma 103: 642–652.

    PubMed  CAS  Google Scholar 

  • Yang F, Müller S, Just R, Ferguson-Smith MA, Wienberg J (1997) Comparative chromosome painting in mammals: human and the Indian muntjac (Muntiacus muntjak vaginalis). Genomics 39: 396–401.

    Article  PubMed  CAS  Google Scholar 

  • Yang F, O'Brien PCM, Milne BS et al. (1999) A complete comparative chromosome map for the dog, red fox and human and its integration with canine genetic maps. Genomics 62: 189–202.

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Alkalaeva EZ, Perelman PL et al. (2003) Reciprocal chromosome painting among human, aardvark, and elephant (superorder Afrotheria) reveals the likely eutherian ancestral karyotype. Proc Natl Acad Sci USA 100: 1062–1066.

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Fu B, O'Brien PCM, Nie W, Ryder OA, Ferguson-Smith MA (2004) Refined genome-wide comparative map of the domestic horse, donkey and human based on cross-species chromosome painting: insight into the occasional fertility of mules. Chromosome Res 12: 65–76.

    Article  PubMed  CAS  Google Scholar