nature.com

Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1 - Nature

  • ️Nasmyth, Kim
  • ️Thu Jul 01 1999

References

  1. Gimenez-Abian, J. F., Clarke, D. J., Mullinger, A. M., Downes, C. S. & Johnson, R. T. Apostprophase topoisomerase II-dependent chromatid core separation step in the formation of metaphase chromosomes. J. Cell. Biol. 131, 7–17 (1995).

    Article  CAS  Google Scholar 

  2. Losada, A., Hirano, M. & Hirano, T. Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Genes Dev. 12, 1003–1012 (1998).

    Article  Google Scholar 

  3. Nicklas, R. B. The forces that move chromosomes in mitosis. Annu. Rev. Biophys. Chem. 17, 431–449 (1988).

    Article  CAS  Google Scholar 

  4. Miyazaki, W. Y. & Orr-Weaver, T. L. Sister chromatid cohesion in mitosis and meiosis. Annu. Rev. Genet. 28, 167–187 (1994).

    Article  CAS  Google Scholar 

  5. Rieder, C. L. & Salmon, E. D. The vertebrate cell kinetochore and its roles during mitosis. Trends Cell Biol. 8, 310–318 (1998).

    Article  CAS  Google Scholar 

  6. Nasmyth, K. Separating sister chromatids. Trends Biochem. Sci. 24, 98–104 (1999).

    Article  CAS  Google Scholar 

  7. Michaelis, C., Ciosk, R. & Nasmyth, K. Cohesins: Chromosomal proteins that prevent premature separation of sister chromatids. Cell 91, 35–45 (1997).

    Article  CAS  Google Scholar 

  8. Guacci, V., Koshland, D. & Strunnikov, A. Adirect link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 91, 47–57 (1997).

    Article  CAS  Google Scholar 

  9. Toth, A. et al . Yeast cohesin complex requires a conserved protein, Eco1p(Ctf7), to establish cohesion between sister chromatids during DNA replication. Genes Dev. 13, 320–333 (1999).

    Article  CAS  Google Scholar 

  10. Uhlmann, F. & Nasmyth, K. Cohesion between sister chromatids must be established during DNA replication. Curr. Biol. 8, 1095–1101 (1998).

    Article  CAS  Google Scholar 

  11. Skibbens, R. V., Corson, L. B., Koshland, D. & Hieter, P. Ctf7p is essential for sister chromatid cohesion and links mitotic chromosome structure to the DNA replication machinery. Genes Dev. 13, 307–319 (1999).

    Article  CAS  Google Scholar 

  12. Ciosk, R. et al . An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. Cell 93, 1067–1076 (1998).

    Article  CAS  Google Scholar 

  13. May, G. S., McGoldrick, C. A., Holt, C. L. & Denison, S. H. The bimB3 mutation of Aspergillus nidulans uncouples DNA replication from the completion of mitosis. J. Biol. Chem. 267, 15737–15743 (1992).

    CAS  PubMed  Google Scholar 

  14. Funabiki, H., Kumada, K. & Yanagida, M. Fission yeast Cut1 and Cut2 are essential for sister chromatid separation, concentrate along the metaphase spindle and form large complexes. EMBO J. 15, 6617–6628 (1996).

    Article  CAS  Google Scholar 

  15. Nagase, T., Seki, N., Ishikawa, K., Tanaka, A. & Nomura, N. Prediction of the coding sequences of unidentified human genes. V. The coding sequences of 40 new genes (KIAA0161–KIAA0200) deduced by analysis of cDNA clones from human cell line KG-1. DNA Res. 3, 17–24 (1996).

    Article  CAS  Google Scholar 

  16. Cohen-Fix, O., Peters, J.-M., Kirschner, M. W. & Koshland, D. Anaphase initiation in Saccharomyces cervisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p. Genes Dev. 10, 3081–3093 (1996).

    Article  CAS  Google Scholar 

  17. Peters, J.-M. SCF and APC the Yin and Yan of cell cycle regulated proteolysis. Curr. Opin. Cell Biol. 10, 759–768 (1998).

    Article  ADS  CAS  Google Scholar 

  18. Yamamoto, A., Guacci, V. & Koshland, D. Pds1p, an inhibitor of anaphase in budding yeast, plays a critical role in the APC and checkpoint pathway(s). J. Cell Biol. 133, 99–110 (1996).

    Article  CAS  Google Scholar 

  19. Liang, C. & Stillman, B. Persistent initiation of DNA replication and chromatin-bound MCM proteins during the cell cycle in cdc6 mutants. Genes Dev. 11, 3375–3386 (1997).

    Article  CAS  Google Scholar 

  20. Groigno, L. & Whitaker, M. An anaphase calcium signal controls chromosome disjunction in urchin embryos. Cell 92, 193–204 (1998).

    Article  CAS  Google Scholar 

  21. Lim, H. H., Goh, P.-Y. & Surana, U. Cdc20 is essential for the cyclosome-mediated proteolysis of both Pds1 and Clb2 during M phase in budding yeast. Curr. Biol. 8, 231–234 (1998).

    Article  CAS  Google Scholar 

  22. McGrew, J. T., Goetsch, L., Byers, B. & Baum, P. Requirement for ESP1 in the nuclear division of S.cerevisiae. Mol. Biol. Cell 3, 1443–1454 (1992).

    Article  CAS  Google Scholar 

  23. Rudner, A. D. & Murray, A. W. The spindle assembly checkpoint. Curr. Opin. Cell Biol. 8, 773–780 (1996).

    Article  CAS  Google Scholar 

  24. Amon, A. The spindle checkpoint. Curr. Opin. Gen. Dev. 9, 69–75 (1999).

    Article  CAS  Google Scholar 

  25. Funabiki, H. et al . Cut2 proteolysis required for sister-chromatid separation in fission yeast. Nature 381, 438–441 (1996).

    Article  ADS  CAS  Google Scholar 

  26. Alexandru, G., Zachariae, W., Schleiffer, A. & Nasmyth, K. Sister chromatid separation and chromosome re-duplication are regulated by different mechanisms in response to spindle damage. EMBO J. 18, 2707–2721 (1999).

    Article  CAS  Google Scholar 

  27. Melby, T. E., Ciampaglio, C. N., Briscoe, G. & Erickson, H. P. The symmetrical structure of structural maintenance of chromosomes (SMC) and MukB proteins: long, antiparallel coiled coils, folded at a flexible hinge. J. Cell Biol. 142, 1595–1604 (1998).

    Article  CAS  Google Scholar 

  28. Akhmedov, A. T. et al . Structural maintenance of chromosomes protein C-terminal domains bind preferentially to DNA with secondary structure. J. Biol. Chem. 273, 24088–24093 (1998).

    Article  CAS  Google Scholar 

  29. Lin, Y., Larson, K. L., Dorer, R. & Smith, G. R. Meiotically induced rec7 and rec8 genes of Schizosaccharomyces pombe. Genetics 132, 75–85 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Molnar, M., Bahler, J., Sipicki, M. & Kohli, J. The rec8 gene of Schizosaccharomyces pombe is involved inlinear element formation, chromosome pairing and sister-chromatid cohesion during meiosis. Genetics 141, 61–73 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Birkenbihl, R. P. & Subramani, S. The rad21 gene product of Schizosaccharomyces pombe is a nuclear, cell cycle-regulated phosphoprotein. J. Biol. Chem. 270, 7703–7711 (1995).

    Article  CAS  Google Scholar 

  32. Uzawa, S., Samejima, I., Hirano, T., Tanaka, K. & Yanagida, M. The fission yeast cut1+ gene regulates spindle pole duplication and has homology to the budding yeast ESP1 gene. Cell 62, 913–925 (1990).

    Article  CAS  Google Scholar 

  33. Gietz, R. D. & Sugino, A. New yeast–Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six base pair restriction sites. Gene 74, 527–534 (1988).

    Article  CAS  Google Scholar 

  34. Rose, M. D., Winston, F. & Hieter, P. Laboratory Course Manual for Methods in Yeast Genetics (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, (1990).

    Google Scholar 

  35. Eckerskorn, C. & Lottspeich, F. Structural characterization of blotting membranes and the influence of membrane parameters for electroblotting and subsequent amino acid sequence analysis of proteins. Electrophoresis 14, 831–838 (1993).

    Article  CAS  Google Scholar 

  36. Eddy, S. R. Hidden Markov models. Curr. Opin. Struct. Biol. 6, 361–365 (1996).

    Article  CAS  Google Scholar 

  37. Kumada, K. et al . Cut1 is loaded onto the spindle by binding to Cut2 and promotes anaphase spindle movement upon Cut2 proteolysis. Curr. Biol. 8, 633–641 (1998).

    Article  CAS  Google Scholar 

Download references