A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication - Nature
- ️Diffley, John F. X.
- ️Thu Oct 08 1998
References
Huberman, J. A. & Riggs, A. D. On the mechanism of DNA replication in mammalian chromosomes. J. Mol. Biol. 32, 327–341 (1968).
Fangman, W. L. & Brewer, B. J. Aquestion of time–replication origins of eukaryotic chromosomes. Cell 71, 363–366 (1992).
Paulovich, A. G. & Hartwell, L. H. Acheckpoint regulates the rate of progression through S phase in S. cerevisiae in response to DNA damage. Cell 82, 841–847 (1995).
Reynolds, A. E., McCarroll, R. M., Newlon, C. S. & Fangman, W. L. Time of replication of ARS elements along yeast chromosome III. Mol. Cell. Biol. 9, 4488–4494 (1989).
Bousset, K. & Diffley, J. F. X. The Cdc7 protein kinase is required for origin firing during S phase. Genes Dev. 12, 480–490 (1998).
Diffley, J. F. X., Cocker, J. H., Dowell, S. J. & Rowley, A. Two steps in the assembly of complexes at yeast replication origins in vivo. Cell 78, 303–316 (1994).
Cocker, J. H., Piatti, S., Santocanale, C., Nasmyth, K. & Diffley, J. F. X. An essential role for the Cdc6 protein in forming the pre-replicative complexes of budding yeast. Nature 379, 180–182 (1996).
Santocanale, C. & Diffley, J. F. X. ORC- and Cdc6-dependent complexes at active and inactive chromosomal replication origins in Saccharomyces cerevisiae. EMBO J. 15, 6671–679 (1996).
Piatti, S., Bohm, T., Cocker, J. H., Diffley, J. F. X. & Nasmyth, K. Activation of S-phase promoting CDKs in late G1 defines a “point of no return” after which Cdc6 synthesis cannot promote DNA replication in yeast. Genes Dev. 10, 1516–1531 (1996).
Ferguson, B. M. & Fangman, W. L. Aposition effect on the time of replication origin activation in yeast. Cell 68, 333–339 (1992).
Dubey, D. D. et al . Evidence suggesting that the ARS elements associated with silencers of the yeast mating-type locus HML do not function as chromosomal DNA replication origins. Mol. Cell. Biol. 11, 5346–5355 (1991).
Broach, J. R. et al . Localization and sequence analysis of yeast origins of DNA replication. Cold Spring Harb. Symp. Quant. Biol. 47, 1165–1173 (1982).
Elledge, S. J. Cell cycle checkpoints: preventing an identity crisis. Science 274, 1664–1672 (1996).
Raghuraman, M. K., Brewer, B. J. & Fangman, W. L. Cell cycle-dependent establishment of a late replication program. Science 276, 806–809 (1997).
Zakian, V. A. ATM-related genes: what do they tell us about functions of the human gene? Cell 82, 685–687 (1995).
Painter, R. B. & Young, B. R. Radiosensitivity in ataxia-telangiectasia: a new explanation. Proc. Natl Acad. Sci. USA 77, 7315–7317 (1980).
Larner, J. M., Lee, H. & Hamlin, J. L. Radiation effects on DNA synthesis in a defined chromosomal replicon. Mol. Cell. Biol. 14, 1901–1908 (1994).
Santocanale, C., Neecke, H., Longhese, M. P., Lucchini, G. & Plevani, P. Mutations in the gene encoding the 34 kDa subunit of yeast replication protein A cause defective S phase progression. J. Mol. Biol. 254, 595–607 (1995).
Rowley, A., Cocker, J. H., Harwood, J. & Diffley, J. F. X. Initiation complex assembly at budding yeast replication origins begins with the recognition of a bipartite sequence by limiting amounts of the initiator, ORC. EMBO J. 14, 2631–2641 (1995).
Diffley, J. F. X. & Cocker, J. H. Protein–DNA interactions at a yeast replication origin. Nature 357, 169–172 (1992).
Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: a Laboratory Manual (Cold Spring Harb. Lab. Press, Cold Spring Harbor, 1989).
Ferguson, B. M., Brewer, B. J., Reynolds, A. E. & Fangman, W. L. Ayeast origin of replication is activated late in S phase. Cell 65, 507–515 (1991).
Allen, J. B., Zhou, Z., Siede, W., Friedberg, E. C. & Elledge, S. J. The SAD1/RAD53 protein kinase controls multiple checkpoints and DNA damage-induced transcription in yeast. Genes Dev. 8, 2401–2415 (1994).
Wellinger, R. J., Ethier, K., Labrecque, P. & Zakian, V. A. Evidence for a new step in telomere maintenance. Cell 85, 423–433 (1996).
Paulovich, A. G., Margulies, R. U., Garvik, B. M. & Hartwell, L. H. RAD9, RAD17, and RAD24 are required for S phase regulation in Saccharomyces cerevisiae in response to DNA damage. Genetics 145, 45–62 (1997).