Structural basis for the activation of 20S proteasomes by 11S regulators - Nature
- ️Hill, Christopher P.
- ️Thu Nov 02 2000
References
Baumeister, W., Walz, JK., Zuhl, F. & Seemuller, E. The proteasome: paradigm of a self-compartmentalizing protease. Cell 92, 367–380 (1998).
Wenzel, T. & Baumeister, W. Conformational constraints in protein degradation by the 20S proteasome. Nature Struct. Biol. 2, 199–204 ( 1995).
Groll, M. et al. Structure of 20S proteasome from yeast at 2.4 Å resolution. Nature 386, 463–471 (1997).
Yao, Y. et al. Structural and functional characterizations of the proteasome-activating protein PA26 from Trypanosoma brucei. J. Biol. Chem. 274, 33921–333930 (1999 ).
Ma, C.-P., Slaughter, C. A. & DeMartino, G. N. Identification, purification, and characterization of a protein activator (PA28) of the 20S proteasome (macropain). J. Biol. Chem. 267, 10515–10523 (1992).
Dubiel, W., Pratt, G., Ferrell, K. & Rechsteiner, M. Purification of an 11S regulator of the multicatalytic protease. J. Biol. Chem. 267, 22369–22377 ( 1992).
Realini, C. et al. Characterization of recombinant REGα, REGβ and REGγ proteasome activators. J. Biol. Chem. 272 , 25483–25492 (1997).
Knowlton, J. R. et al. Structure of the proteasome activator REGα (PA28α). Nature 390, 639–643 (1997).
Zhang, Z. et al. Proteasome activator 11S REG or PA28: Recombinant REGα/REGβ hetero-oligomers are heptamers. Biochemistry 38, 5651–5658 (1999).
Groettrup, M. et al. A role for the proteasome regulator PA28α in antigen presentation. Nature 381, 166– 168 (1996).
Preckel, T. et al. Impaired immunoproteasome assembly and immune responses in PA28-/- mice. Science 286, 2162–2165 (1999).
Gray, C. W., Slaughter, C. A. & DeMartino, G. N. PA28 activator protein forms regulatory caps on proteasome stacked rings. J. Mol. Biol. 236, 7– 15 (1994).
Zhang, Z. et al. Identification of an activation region in the proteasome activator REGα. Proc. Natl Acad. Sci. USA 95, 2807–2811 (1998).
Song, X., von Kampen, J., Slaughter, C. A. & DeMartino, G. N. Relative functions of the α and β subunits of the proteasome activator, PA28. J. Biol. Chem. 272, 27994– 28000 (1997).
Li, J., Gao, X., Joss, L. & Rechsteiner, M. The proteasome activator 11 S REG or PA28: chimeras implicate carboxyl-terminal sequences in oligomerization and proteasome binding but not in the activation of specific proteasome catalytic subunits. J. Mol. Biol. 299, 641–654 (2000).
Dick, T. P. et al. Coordinated dual cleavages induced by the proteasome regulator PA28 lead to dominant MHC ligands. Cell 86, 253–262 (1996).
Rechsteiner, M. in Ubiquitin and the Biology of the Cell (eds Peters, J.-M., Harris, J. R. & Finley, D.) 147–189 (Plenum, New York, 1998).
Hendil, K. B., Khan, S. & Tanaka, K. Simultaneous binding of PA28 and PA700 activators to 20S proteasomes. Biochem. J. 332, 749– 754 (1998).
Stern, L. J. & Wiley, D. C. Antigenic peptide binding by class I and class II histocompatibility proteins. Structure 2, 245–251 (1994).
Gaczynska, M., Goldberg, A. L., Tanaka, K., Hendil, K. B. & Rock, K. L. Proteasome subunits X and Y alter peptidase activities in opposite ways to the interferon-γ-induced subunits LMP2 and LMP7. J. Biol. Chem. 271, 17275–17280 (1996).
Kisselev, A. F., Akopian, T. N., Woo, K. M. & Goldberg, A. L. The sizes of peptides generated from protein by mammalian 26 and 20S proteasomes. Implications for understanding the degradative mechanism and antigen presentation. J. Biol. Chem. 274, 3363– 3371 (1999).
Nussbaum, A. K. et al. Cleavage motifs of the yeast 20S proteasome beta subunits deduced from digests of enolase 1. Proc. Natl Acad. Sci. USA 95, 125024–125029 (1998 ).
Craiu, A., Akopian, T., Goldberg, A. & Rock, K. L. Two distinct proteolytic processes in the generation of a major histocompatibility class I-presented peptide. Proc. Natl Acad. Sci. USA 94, 10850–10855 (1997).
Rubin, D. M. et al. Identification of the gal4 suppressor Sug1 as a subunit of the yeast 26S proteasome. Nature 379, 655–657 (1996).
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 ( 1997).
Collaborative Computing Project No. 4.. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 ( 1994).
Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 ( 1994).
Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).
Cowtan, K. & Main, P. Miscellaneous algorithms for density modification. Acta Crystallogr. D 54, 487 –493 (1998).
Brünger, A. T. X-PLOR Version 3.843, a System for X-ray Crystallography and NMR (Yale Univ., New Haven, Connecticut, 1996).