nature.com

Structural basis for the activation of 20S proteasomes by 11S regulators - Nature

  • ️Hill, Christopher P.
  • ️Thu Nov 02 2000

References

  1. Baumeister, W., Walz, JK., Zuhl, F. & Seemuller, E. The proteasome: paradigm of a self-compartmentalizing protease. Cell 92, 367–380 (1998).

    Article  CAS  Google Scholar 

  2. Wenzel, T. & Baumeister, W. Conformational constraints in protein degradation by the 20S proteasome. Nature Struct. Biol. 2, 199–204 ( 1995).

    Article  CAS  Google Scholar 

  3. Groll, M. et al. Structure of 20S proteasome from yeast at 2.4 Å resolution. Nature 386, 463–471 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Yao, Y. et al. Structural and functional characterizations of the proteasome-activating protein PA26 from Trypanosoma brucei. J. Biol. Chem. 274, 33921–333930 (1999 ).

    Article  CAS  Google Scholar 

  5. Ma, C.-P., Slaughter, C. A. & DeMartino, G. N. Identification, purification, and characterization of a protein activator (PA28) of the 20S proteasome (macropain). J. Biol. Chem. 267, 10515–10523 (1992).

    CAS  PubMed  Google Scholar 

  6. Dubiel, W., Pratt, G., Ferrell, K. & Rechsteiner, M. Purification of an 11S regulator of the multicatalytic protease. J. Biol. Chem. 267, 22369–22377 ( 1992).

    CAS  PubMed  Google Scholar 

  7. Realini, C. et al. Characterization of recombinant REGα, REGβ and REGγ proteasome activators. J. Biol. Chem. 272 , 25483–25492 (1997).

    Article  CAS  Google Scholar 

  8. Knowlton, J. R. et al. Structure of the proteasome activator REGα (PA28α). Nature 390, 639–643 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Zhang, Z. et al. Proteasome activator 11S REG or PA28: Recombinant REGα/REGβ hetero-oligomers are heptamers. Biochemistry 38, 5651–5658 (1999).

    Article  CAS  Google Scholar 

  10. Groettrup, M. et al. A role for the proteasome regulator PA28α in antigen presentation. Nature 381, 166– 168 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Preckel, T. et al. Impaired immunoproteasome assembly and immune responses in PA28-/- mice. Science 286, 2162–2165 (1999).

    Article  CAS  Google Scholar 

  12. Gray, C. W., Slaughter, C. A. & DeMartino, G. N. PA28 activator protein forms regulatory caps on proteasome stacked rings. J. Mol. Biol. 236, 7– 15 (1994).

    Article  CAS  Google Scholar 

  13. Zhang, Z. et al. Identification of an activation region in the proteasome activator REGα. Proc. Natl Acad. Sci. USA 95, 2807–2811 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Song, X., von Kampen, J., Slaughter, C. A. & DeMartino, G. N. Relative functions of the α and β subunits of the proteasome activator, PA28. J. Biol. Chem. 272, 27994– 28000 (1997).

    Article  CAS  Google Scholar 

  15. Li, J., Gao, X., Joss, L. & Rechsteiner, M. The proteasome activator 11 S REG or PA28: chimeras implicate carboxyl-terminal sequences in oligomerization and proteasome binding but not in the activation of specific proteasome catalytic subunits. J. Mol. Biol. 299, 641–654 (2000).

    Article  CAS  Google Scholar 

  16. Dick, T. P. et al. Coordinated dual cleavages induced by the proteasome regulator PA28 lead to dominant MHC ligands. Cell 86, 253–262 (1996).

    Article  CAS  Google Scholar 

  17. Rechsteiner, M. in Ubiquitin and the Biology of the Cell (eds Peters, J.-M., Harris, J. R. & Finley, D.) 147–189 (Plenum, New York, 1998).

    Book  Google Scholar 

  18. Hendil, K. B., Khan, S. & Tanaka, K. Simultaneous binding of PA28 and PA700 activators to 20S proteasomes. Biochem. J. 332, 749– 754 (1998).

    Article  Google Scholar 

  19. Stern, L. J. & Wiley, D. C. Antigenic peptide binding by class I and class II histocompatibility proteins. Structure 2, 245–251 (1994).

    Article  CAS  Google Scholar 

  20. Gaczynska, M., Goldberg, A. L., Tanaka, K., Hendil, K. B. & Rock, K. L. Proteasome subunits X and Y alter peptidase activities in opposite ways to the interferon-γ-induced subunits LMP2 and LMP7. J. Biol. Chem. 271, 17275–17280 (1996).

    Article  CAS  Google Scholar 

  21. Kisselev, A. F., Akopian, T. N., Woo, K. M. & Goldberg, A. L. The sizes of peptides generated from protein by mammalian 26 and 20S proteasomes. Implications for understanding the degradative mechanism and antigen presentation. J. Biol. Chem. 274, 3363– 3371 (1999).

    Article  CAS  Google Scholar 

  22. Nussbaum, A. K. et al. Cleavage motifs of the yeast 20S proteasome beta subunits deduced from digests of enolase 1. Proc. Natl Acad. Sci. USA 95, 125024–125029 (1998 ).

    Article  Google Scholar 

  23. Craiu, A., Akopian, T., Goldberg, A. & Rock, K. L. Two distinct proteolytic processes in the generation of a major histocompatibility class I-presented peptide. Proc. Natl Acad. Sci. USA 94, 10850–10855 (1997).

    Article  ADS  CAS  Google Scholar 

  24. Rubin, D. M. et al. Identification of the gal4 suppressor Sug1 as a subunit of the yeast 26S proteasome. Nature 379, 655–657 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 ( 1997).

    Article  CAS  Google Scholar 

  26. Collaborative Computing Project No. 4.. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 ( 1994).

    Article  Google Scholar 

  27. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 ( 1994).

    Article  Google Scholar 

  28. Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  29. Cowtan, K. & Main, P. Miscellaneous algorithms for density modification. Acta Crystallogr. D 54, 487 –493 (1998).

    Article  CAS  Google Scholar 

  30. Brünger, A. T. X-PLOR Version 3.843, a System for X-ray Crystallography and NMR (Yale Univ., New Haven, Connecticut, 1996).

    Google Scholar 

Download references