ClC-5 Cl--channel disruption impairs endocytosis in a mouse model for Dent's disease - Nature
- ️Jentsch, Thomas J.
- ️Thu Nov 16 2000
References
Wrong, O. M., Norden, A. G. & Feest, T. G. Dent's disease; a familial proximal renal tubular syndrome with low-molecular-weight proteinuria, hypercalciuria, nephrocalcinosis, metabolic bone disease, progressive renal failure and a marked male predominance. Q. J. Med. 87, 473–493 (1994).
Scheinman, S. J. X-linked hypercalciuric nephrolithiasis: clinical syndromes and chloride channel mutations. Kidney Int. 53, 3– 17 (1998).
Lloyd, S. E. et al. A common molecular basis for three inherited kidney stone diseases. Nature 379, 445– 449 (1996).
Fisher, S. E. et al. Isolation and partial characterization of a chloride channel gene which is expressed in kidney and is a candidate for Dent's disease (an X-linked hereditary nephrolithiasis). Hum. Mol. Genet. 3, 2053–2059 (1994).
Steinmeyer, K., Schwappach, B., Bens, M., Vandewalle, A. & Jentsch, T. J. Cloning and functional expression of rat CLC-5, a chloride channel related to kidney disease. J. Biol. Chem. 270, 31172–31177 (1995).
Günther, W., Lüchow, A., Cluzeaud, F., Vandewalle, A. & Jentsch, T. J. ClC-5, the chloride channel mutated in Dent's disease, colocalizes with the proton pump in endocytotically active kidney cells. Proc. Natl Acad. Sci. USA 95, 8075–8080 (1998).
Devuyst, O., Christie, P. T., Courtoy, P. J., Beauwens, R. & Thakker, R. V. Intra-renal and subcellular distribution of the human chloride channel, CLC-5, reveals a pathophysiological basis for Dent's disease. Hum. Mol. Genet. 8, 247– 257 (1999).
Jentsch, T. J., Friedrich, T., Schriever, A. & Yamada, H. The CLC chloride channel family. Pflügers Arch. 437, 783–795 (1999).
Friedrich, T., Breiderhoff, T. & Jentsch, T. J. Mutational analysis demonstrates that ClC-4 and ClC-5 directly mediate plasma membrane currents. J. Biol. Chem. 274, 896–902 (1999).
Luyckx, V. A., Leclercq, B., Dowland, L. K. & Yu, A. S. Diet-dependent hypercalciuria in transgenic mice with reduced CLC5 chloride channel expression. Proc. Natl Acad. Sci. USA 96, 12174–12179 (1999).
Morimoto, T. et al. Mutations in CLCN5 chloride channel in Japanese patients with low molecular weight proteinuria. J. Am. Soc. Nephrol. 9, 811–818 (1998).
Leheste, J. R. et al. Megalin knockout mice as an animal model of low molecular weight proteinuria. Am. J. Pathol. 155, 1361–1370 (1999).
Orlando, R. A. et al. Megalin is an endocytic receptor for insulin. J. Am. Soc. Nephrol. 9, 1759–1766 (1998).
Nykjaer, A. et al. An endocytic pathway essential for renal uptake and activation of the steroid 25-(OH) vitamin D3. Cell 96, 507–515 (1999).
Christensen, E. I. et al. Evidence for an essential role of megalin in transepithelial transport of retinol. J. Am. Soc. Nephrol. 10, 685–695 (1999).
Sakamoto, H. et al. Cellular and subcellular immunolocalization of ClC-5 channel in mouse kidney: colocalization with H+-ATPase. Am. J. Physiol. 277, F957–F965 (1999).
Beck, L. et al. Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc. Natl Acad. Sci. USA 95, 5372–5377 (1998).
Murer, H. et al. Posttranscriptional regulation of the proximal tubule NaPi-II transporter in response to PTH and dietary Pi. Am. J. Physiol. 277, F676–F684 ( 1999).
Biemesderfer, D. et al. Monoclonal antibodies for high-resolution localization of NHE3 in adult and neonatal rat kidney. Am. J. Physiol. 273, F289–F299 (1997).
D'Souza, S. et al. The epithelial sodium-hydrogen antiporter Na+/H+ exchanger 3 accumulates and is functional in recycling endosomes. J. Biol. Chem. 273, 2035– 2043 (1998).
Traebert, M., Roth, J., Biber, J., Murer, H. & Kaissling, B. Internalization of proximal tubular type II Na-Pi cotransporter by PTH: immunogold electron microscopy. Am. J. Physiol. 278, F148–F154 (2000).
Zhang, Y. et al. In vivo PTH provokes apical NHE3 and NaPi2 redistribution and Na-K-ATPase inhibition. Am. J. Physiol. 276, F711-F719 (1999).
Custer, M., Lotscher, M., Biber, J., Murer, H. & Kaissling, B. Expression of Na-Pi cotransport in rat kidney: localization by RT-PCR and immunohistochemistry. Am. J. Physiol. 266, F767–F774 (1994).
Bosio, M., Bianchi, M. L., Lloyd, S. E. & Thakker, R. V. A familial syndrome due to Arg648Stop mutation in the X-linked renal chloride channel gene. Pediatr. Nephrol. 13, 278– 283 (1999).
Kaufmann, M. et al. Apical and basolateral parathyroid hormone receptors in rat renal cortical membranes. Endocrinology 134, 1173–1178 (1994).
Traebert, M., Völkl, H., Biber, J., Murer, H. & Kaissling, B. Luminal and contraluminal action of 1-34 and 3-34 PTH peptides on renal type IIa Na-Pi cotransporter. Am. J. Physiol. 278, F792–F798 (2000).
Hilpert, J. et al. Megalin antagonizes activation of the parathyroid hormone receptor. J. Biol. Chem. 274, 5620– 5625 (1999).
Gekle, M. et al. Inhibition of Na+-H+ exchange impairs receptor-mediated albumin endocytosis in renal proximal tubule-derived epithelial cells from opossum. J. Physiol. (Lond.) 520, 709–721 (1999).
Schultheis, P. J. et al. Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger. Nature Genet. 19, 282–285 ( 1998).
Zheng, G. et al. Organ distribution in rats of two members of the low-density lipoprotein receptor gene family, gp330 and LRP/alpa 2MR, and the receptor-associated protein (RAP). J. Histochem. Cytochem. 42, 531–542 (1994).