nature.com

ClC-5 Cl--channel disruption impairs endocytosis in a mouse model for Dent's disease - Nature

  • ️Jentsch, Thomas J.
  • ️Thu Nov 16 2000

References

  1. Wrong, O. M., Norden, A. G. & Feest, T. G. Dent's disease; a familial proximal renal tubular syndrome with low-molecular-weight proteinuria, hypercalciuria, nephrocalcinosis, metabolic bone disease, progressive renal failure and a marked male predominance. Q. J. Med. 87, 473–493 (1994).

    CAS  Google Scholar 

  2. Scheinman, S. J. X-linked hypercalciuric nephrolithiasis: clinical syndromes and chloride channel mutations. Kidney Int. 53, 3– 17 (1998).

    Article  CAS  Google Scholar 

  3. Lloyd, S. E. et al. A common molecular basis for three inherited kidney stone diseases. Nature 379, 445– 449 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Fisher, S. E. et al. Isolation and partial characterization of a chloride channel gene which is expressed in kidney and is a candidate for Dent's disease (an X-linked hereditary nephrolithiasis). Hum. Mol. Genet. 3, 2053–2059 (1994).

    CAS  PubMed  Google Scholar 

  5. Steinmeyer, K., Schwappach, B., Bens, M., Vandewalle, A. & Jentsch, T. J. Cloning and functional expression of rat CLC-5, a chloride channel related to kidney disease. J. Biol. Chem. 270, 31172–31177 (1995).

    Article  CAS  Google Scholar 

  6. Günther, W., Lüchow, A., Cluzeaud, F., Vandewalle, A. & Jentsch, T. J. ClC-5, the chloride channel mutated in Dent's disease, colocalizes with the proton pump in endocytotically active kidney cells. Proc. Natl Acad. Sci. USA 95, 8075–8080 (1998).

    Article  ADS  Google Scholar 

  7. Devuyst, O., Christie, P. T., Courtoy, P. J., Beauwens, R. & Thakker, R. V. Intra-renal and subcellular distribution of the human chloride channel, CLC-5, reveals a pathophysiological basis for Dent's disease. Hum. Mol. Genet. 8, 247– 257 (1999).

    Article  CAS  Google Scholar 

  8. Jentsch, T. J., Friedrich, T., Schriever, A. & Yamada, H. The CLC chloride channel family. Pflügers Arch. 437, 783–795 (1999).

    Article  CAS  Google Scholar 

  9. Friedrich, T., Breiderhoff, T. & Jentsch, T. J. Mutational analysis demonstrates that ClC-4 and ClC-5 directly mediate plasma membrane currents. J. Biol. Chem. 274, 896–902 (1999).

    Article  CAS  Google Scholar 

  10. Luyckx, V. A., Leclercq, B., Dowland, L. K. & Yu, A. S. Diet-dependent hypercalciuria in transgenic mice with reduced CLC5 chloride channel expression. Proc. Natl Acad. Sci. USA 96, 12174–12179 (1999).

    Article  ADS  CAS  Google Scholar 

  11. Morimoto, T. et al. Mutations in CLCN5 chloride channel in Japanese patients with low molecular weight proteinuria. J. Am. Soc. Nephrol. 9, 811–818 (1998).

    CAS  PubMed  Google Scholar 

  12. Leheste, J. R. et al. Megalin knockout mice as an animal model of low molecular weight proteinuria. Am. J. Pathol. 155, 1361–1370 (1999).

    Article  CAS  Google Scholar 

  13. Orlando, R. A. et al. Megalin is an endocytic receptor for insulin. J. Am. Soc. Nephrol. 9, 1759–1766 (1998).

    CAS  PubMed  Google Scholar 

  14. Nykjaer, A. et al. An endocytic pathway essential for renal uptake and activation of the steroid 25-(OH) vitamin D3. Cell 96, 507–515 (1999).

    Article  CAS  Google Scholar 

  15. Christensen, E. I. et al. Evidence for an essential role of megalin in transepithelial transport of retinol. J. Am. Soc. Nephrol. 10, 685–695 (1999).

    CAS  PubMed  Google Scholar 

  16. Sakamoto, H. et al. Cellular and subcellular immunolocalization of ClC-5 channel in mouse kidney: colocalization with H+-ATPase. Am. J. Physiol. 277, F957–F965 (1999).

    CAS  PubMed  Google Scholar 

  17. Beck, L. et al. Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc. Natl Acad. Sci. USA 95, 5372–5377 (1998).

    Article  ADS  CAS  Google Scholar 

  18. Murer, H. et al. Posttranscriptional regulation of the proximal tubule NaPi-II transporter in response to PTH and dietary Pi. Am. J. Physiol. 277, F676–F684 ( 1999).

    CAS  PubMed  Google Scholar 

  19. Biemesderfer, D. et al. Monoclonal antibodies for high-resolution localization of NHE3 in adult and neonatal rat kidney. Am. J. Physiol. 273, F289–F299 (1997).

    Article  CAS  Google Scholar 

  20. D'Souza, S. et al. The epithelial sodium-hydrogen antiporter Na+/H+ exchanger 3 accumulates and is functional in recycling endosomes. J. Biol. Chem. 273, 2035– 2043 (1998).

    Article  CAS  Google Scholar 

  21. Traebert, M., Roth, J., Biber, J., Murer, H. & Kaissling, B. Internalization of proximal tubular type II Na-Pi cotransporter by PTH: immunogold electron microscopy. Am. J. Physiol. 278, F148–F154 (2000).

    CAS  Google Scholar 

  22. Zhang, Y. et al. In vivo PTH provokes apical NHE3 and NaPi2 redistribution and Na-K-ATPase inhibition. Am. J. Physiol. 276, F711-F719 (1999).

    Google Scholar 

  23. Custer, M., Lotscher, M., Biber, J., Murer, H. & Kaissling, B. Expression of Na-Pi cotransport in rat kidney: localization by RT-PCR and immunohistochemistry. Am. J. Physiol. 266, F767–F774 (1994).

    CAS  PubMed  Google Scholar 

  24. Bosio, M., Bianchi, M. L., Lloyd, S. E. & Thakker, R. V. A familial syndrome due to Arg648Stop mutation in the X-linked renal chloride channel gene. Pediatr. Nephrol. 13, 278– 283 (1999).

    Article  CAS  Google Scholar 

  25. Kaufmann, M. et al. Apical and basolateral parathyroid hormone receptors in rat renal cortical membranes. Endocrinology 134, 1173–1178 (1994).

    Article  CAS  Google Scholar 

  26. Traebert, M., Völkl, H., Biber, J., Murer, H. & Kaissling, B. Luminal and contraluminal action of 1-34 and 3-34 PTH peptides on renal type IIa Na-Pi cotransporter. Am. J. Physiol. 278, F792–F798 (2000).

    CAS  Google Scholar 

  27. Hilpert, J. et al. Megalin antagonizes activation of the parathyroid hormone receptor. J. Biol. Chem. 274, 5620– 5625 (1999).

    Article  CAS  Google Scholar 

  28. Gekle, M. et al. Inhibition of Na+-H+ exchange impairs receptor-mediated albumin endocytosis in renal proximal tubule-derived epithelial cells from opossum. J. Physiol. (Lond.) 520, 709–721 (1999).

    Article  CAS  Google Scholar 

  29. Schultheis, P. J. et al. Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger. Nature Genet. 19, 282–285 ( 1998).

    Article  CAS  Google Scholar 

  30. Zheng, G. et al. Organ distribution in rats of two members of the low-density lipoprotein receptor gene family, gp330 and LRP/alpa 2MR, and the receptor-associated protein (RAP). J. Histochem. Cytochem. 42, 531–542 (1994).

    Article  CAS  Google Scholar 

Download references