nature.com

Rewiring the keyboard: evolvability of the genetic code - Nature Reviews Genetics

  • ️Landweber, Laura F.
  • ️Mon Jan 01 2001
  • Crick, F. H. C. The origin of the genetic code. J. Mol. Biol. 38, 367–379 (1968).Seminal introduction to the origin and evolution of the genetic code, best known for its exposition of the 'frozen accident' theory (that the code became fixed at a suboptimal state, because to change it would be deleterious).

    Article  CAS  PubMed  Google Scholar 

  • Knight, R. D., Freeland, S. J. & Landweber, L. F. Selection, history and chemistry: the three faces of the genetic code. Trends Biochem. Sci. 24, 241–247 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Szathmáry, E. The origin of the genetic code: amino acids as cofactors in an RNA world. Trends Genet. 15, 223–229 (1999).

    Article  PubMed  Google Scholar 

  • Barrell, B. G., Bankier, A. T. & Drouin, J. A different genetic code in human mitochondria. Nature 282, 189–194 ( 1979).

    Article  CAS  PubMed  Google Scholar 

  • Osawa, S. Evolution of the Genetic Code (Oxford Univ. Press, Oxford, 1995).Exposition of the 'codon capture' hypothesis, which proposes a neutral mechanism for codon reassignment through a stage in which the codon disappears from the genome entirely.

    Google Scholar 

  • Schultz, D. W. & Yarus, M. On malleability in the genetic code . J. Mol. Evol. 42, 597– 601 (1996).Exposition of the 'ambiguous intermediate' hypothesis, which suggests that the genetic code changes through a state in which some codons have more than one meaning.

    Article  CAS  PubMed  Google Scholar 

  • Santos, M. A., Cheesman, C., Costa, V., Moradas-Ferreira, P. & Tuite, M. F. Selective advantages created by codon ambiguity allowed for the evolution of an alternative genetic code in Candida spp. Mol. Microbiol. 31, 937–947 (1999).Provides experimental support for the idea that ambiguous decoding can be advantageous in some circumstances.

    Article  CAS  PubMed  Google Scholar 

  • Wagner, G. P. & Altenberg, L. Complex adaptations and the evolution of evolvability. Evolution 50, 967– 976 (1996).

    Article  PubMed  Google Scholar 

  • Andersson, S. G. & Kurland, C. G. Genomic evolution drives the evolution of the translation system. Biochem. Cell Biol. 73, 775–787 ( 1995).Most complete exposition of the 'genome reduction' hypothesis, which suggests that pressure to minimize mitochondrial genomes leads to the reassignment of specific codons.

    Article  CAS  PubMed  Google Scholar 

  • Sugita, T. & Nakase, T. Non-universal usage of the leucine CUG codon and the molecular phylogeny of the genus Candida. Syst. Appl. Microbiol. 22, 79–86 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Tourancheau, A. B., Tsao, N., Klobutcher, L. A., Pearlman, R. E. & Adoutte, A. Genetic code deviations in the ciliates: evidence for multiple and independent events. EMBO J. 14, 3262–3267 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehara, M., Inagaki, Y., Watanabe, K. I. & Ohama, T. Phylogenetic analysis of diatom coxI genes and implications of a fluctuating GC content on mitochondrial genetic code evolution. Curr. Genet. 37, 29–33 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  • Hayashi-Ishimaru, Y., Ohama, T., Kawatsu, Y., Nakamura, K. & Osawa, S. UAG is a sense codon in several chlorophycean mitochondria . Curr. Genet. 30, 29–33 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Hayashi-Ishimaru, Y., Ehara, M., Inagaki, Y. & Ohama, T. A deviant mitochondrial genetic code in prymnesiophytes (yellow-algae): UGA codon for tryptophan. Curr. Genet. 32, 296–299 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Castresana, J., Feldmaier-Fuchs, G. & Pääbo, S. Codon reassignment and amino acid composition in hemichordate mitochondria. Proc. Natl Acad. Sci. USA 95, 3703–3707 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osawa, S., Jukes, T. H., Watanabe, K. & Muto, A. Recent evidence for evolution of the genetic code. Microbiol. Rev. 56, 229–264 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lagerkvist, U. Unorthodox codon reading and the evolution of the genetic code. Cell 23, 305–306 ( 1981).

    Article  CAS  PubMed  Google Scholar 

  • Knight, R. D. & Landweber, L. F. Guilt by association: the arginine case revisited. RNA 6, 499– 510 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito, K., Uno, M. & Nakamura, Y. A tripeptide 'anticodon' deciphers stop codons in messenger RNA. Nature 403, 680–684 (2000).Experimental demonstration that bacterial release factors use only a few amino acids to recognize the specific mRNA stop codons.

    Article  CAS  PubMed  Google Scholar 

  • Perret, V. et al. Relaxation of a transfer RNA specificity by removal of modified nucleotides. Nature 344, 787– 789 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Muramatsu, T. et al. Codon and amino-acid specificities of a transfer RNA are both converted by a single post-transcriptional modification. Nature 336, 179–181 ( 1988).

    Article  CAS  PubMed  Google Scholar 

  • Cermakian, N. & Cedegren, R. C. in Modification and Editing of RNA (eds Grosjean, H. & Benne, R.) 535– 541 (American Society for Microbiology, Washington, 1998).Reviews the distribution of modified bases throughout the three domains of life, and argues that many of the modifications pre-date the last common ancestor of extant life.

    Book  Google Scholar 

  • Unrau, P. J. & Bartel, D. P. RNA-catalysed nucleotide synthesis . Nature 395, 260–263 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Levy, M. & Miller, S. L. The prebiotic synthesis of modified purines and their potential role in the RNA world. J. Mol. Evol. 48, 631–637 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  • Edmonds, C. G. et al. Posttranscriptional modification of tRNA in thermophilic archaea (Archaebacteria). J. Bacteriol. 173, 3138 –3148 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giege, R., Sissler, M. & Florentz, C. Universal rules and idiosyncratic features in tRNA identity . Nucleic Acids Res. 26, 5017– 5035 (1998).Excellent review of tRNA identity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murgola, E. J. tRNA, suppression, and the code. Annu. Rev. Genet. 19, 57–80 (1985).

    Article  CAS  PubMed  Google Scholar 

  • Arnez, J. G. & Moras, D. Structural and functional considerations of the aminoacylation reaction. Trends Biochem. Sci. 22, 211–216 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Matsuyama, S., Ueda, T., Crain, P. F., McCloskey, J. A. & Watanabe, K. A novel wobble rule found in starfish mitochondria. Presence of 7-methylguanosine at the anticodon wobble position expands decoding capability of tRNA. J. Biol. Chem. 273, 3363–3368 (1998). This is one of a series of papers from Watanabe's lab, and shows the role of specific base modifications in changing the genetic code in mitochondria.

    Article  CAS  PubMed  Google Scholar 

  • Tomita, K., Ueda, T. & Watanabe, K. 7-Methylguanosine at the anticodon wobble position of squid mitochondrial tRNA(Ser)GCU: molecular basis for assignment of AGA/AGG codons as serine in invertebrate mitochondria. Biochim. Biophys. Acta 1399, 78–82 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  • Alfonzo, J. D., Blanc, V., Estevez, A. M., Rubio, M. A. & Simpson, L. C to U editing of the anticodon of imported mitochondrial tRNA(Trp) allows decoding of the UGA stop codon in Leishmania tarentolae. EMBO J. 18, 7056–7062 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Small, I., Wintz, H., Akashi, K. & Mireau, H. Two birds with one stone: genes that encode products targeted to two or more compartments . Plant Mol. Biol. 38, 265– 277 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Mazauric, M. H., Roy, H. & Kern, D. tRNA glycylation system from Thermus thermophilus. tRNAGly identity and functional interrelation with the glycylation systems from other phylae. Biochemistry 38, 13094– 13105 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Crick, F. H. C. The recent excitement in the coding problem. Prog. Nucleic Acids 1, 163–217 ( 1963).

    CAS  Google Scholar 

  • Crick, F. H. Codon–anticodon pairing: the wobble hypothesis. J. Mol. Biol. 19, 548–555 ( 1966).

    Article  CAS  PubMed  Google Scholar 

  • Osawa, S. & Jukes, T. H. Codon reassignment (codon capture) in evolution. J. Mol. Evol. 28, 271– 278 (1989).

    Article  CAS  PubMed  Google Scholar 

  • Schultz, D. W. & Yarus, M. Transfer RNA mutation and the malleability of the genetic code. J. Mol. Biol. 235, 1377–1380 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Andersson, S. G. & Kurland, C. G. Reductive evolution of resident genomes. Trends Microbiol. 6, 263–268 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Takai, K., Takaku, H. & Yokoyama, S. In vitro codon-reading specificities of unmodified tRNA molecules with different anticodons on the sequence background of Escherichia coli tRNASer. Biochem. Biophys. Res. Commun. 257, 662–667 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Szathmáry, E. Codon swapping as a possible evolutionary mechanism. J. Mol. Evol. 32, 178–182 ( 1991).

    Article  Google Scholar 

  • Lagerkvist, U. 'Two out of three': An alternative method for codon reading. Proc. Natl Acad. Sci. USA 75, 1759–1762 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saks, M. E., Sampson, J. R. & Abelson, J. Evolution of a transfer RNA gene through a point mutation in the anticodon. Science 279, 1665– 1670 (1998).Demonstration that a single-base change at the anticodon of a tRNA can change both its decoding and aminoacylation specificities. This paper has important implications for the use of tRNA phylogeny to track the evolution of the genetic code.

    Article  CAS  PubMed  Google Scholar 

  • Pallanck, K., Pak, M. & Schulman, L. H. in tRNA: Structure, Biosynthesis, and Function (eds Söll, D. & RajBhandary, U.) 371–394 (American Society for Microbiology, Washington, 1995).

    Book  Google Scholar 

  • Murgola, E. J. in tRNA: Structure, Biosynthesis and Function (eds Söll, D. & RajBhandary, U.) 491–509 (American Society for Microbiology, Washington, 1995).

    Book  Google Scholar 

  • Jukes, T. H. Genetic code 1990. Outlook. Experientia 46, 1149–1157 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Tomita, K. et al. Codon reading patterns in Drosophila melanogaster mitochondria based on their tRNA sequences: a unique wobble rule in animal mitochondria . Nucleic Acids Res. 27, 4291– 4297 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schimmel, P., Giege, R., Moras, D. & Yokoyama, S. An operational genetic code for amino acids and possible relationship to genetic code. Proc. Natl Acad. Sci. USA 90, 8763– 8768 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright, E. V. Gadsby: a story of over 50,000 words without using the letter 'E' (Wetzel, Los Angeles, 1939).

    Google Scholar 

  • Jukes, T. H. Neutral changes and modifications of the genetic code. Theor. Popul. Biol. 49, 143–145 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  • Keeling, P. J. & Doolittle, W. F. Widespread and ancient distribution of a noncanonical genetic Code in diplomonads. Mol. Biol. Evol. 14, 895–901 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Freeland, S. J. & Hurst, L. D. The genetic code is one in a million. J. Mol. Evol. 47, 238 –248 (1998).A statistical argument to show that the actual genetic code minimizes the effects of error far better than would be expected by chance.

    Article  CAS  PubMed  Google Scholar 

  • Freeland, S. J., Knight, R. D., Landweber, L. F. & Hurst, L. D. Early fixation of an optimal genetic code. Mol. Biol. Evol. 17, 511–518 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Yarus, M. & Schultz, D. W. Response: Further comments on codon reassignment. J. Mol. Evol. 45, 1– 8 (1997).

    Article  Google Scholar 

  • Curran, J. F. Decoding with the A:I wobble pair is inefficient. Nucleic Acids Res. 23, 683–688 ( 1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersson, G. E. & Kurland, C. G. An extreme codon preference strategy: codon reassignment. Mol. Biol. Evol. 8, 530–544 ( 1991).

    CAS  PubMed  Google Scholar 

  • Yarus, M. RNA-ligand chemistry: a testable source for the genetic code. RNA 6, 475–484 ( 2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider, S. U. & de Groot, E. J. Sequences of two rbcS cDNA clones of Batophora oerstedii: structural and evolutionary considerations. Curr. Genet. 20, 173– 175 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Lozupone, C. A., Knight, R. D. & Landweber, L. F. The molecular basis of nuclear genetic code change in ciliates. Curr. Biol. (in the press).

  • Oba, T., Andachi, Y., Muto, A. & Osawa, S. CGG: an unassigned or nonsense codon in Mycoplasma capricolum. Proc. Natl Acad. Sci. USA 88, 921–925 ( 1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuck, U., Jekosch, K. & Holzamer, P. DNA sequence analysis of the complete mitochondrial genome of the green alga Scenedesmus obliquus: evidence for UAG being a leucine and UCA being a non-sense codon. Gene 253 , 13–18 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Kano, A., Ohama, T., Abe, R. & Osawa, S. Unassigned or nonsense codons in Micrococcus luteus. J. Mol. Biol. 230, 51–56 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith, T. Kingdom protozoa and its 18 phyla. Microbiol. Rev. 57, 953–994 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Telford, M. J., Herniou, E. A., Russell, R. B. & Littlewood, D. T. Changes in mitochondrial genetic codes as phylogenetic characters: two examples from the flatworms. Proc. Natl Acad. Sci. USA 97, 11359–11364 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inagaki, Y., Ehara, M., Watanabe, K. I., Hayashi-Ishimaru, Y. & Ohama, T. Directionally evolving genetic code: the UGA codon from stop to tryptophan in mitochondria. J. Mol. Evol. 47, 378–384 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Clark-Walker, G. D. & Weiller, G. F. The structure of the small mitochondrial DNA of Kluyveromyces thermotolerans is likely to reflect the ancestral gene order in fungi. J. Mol. Evol. 38, 593–601 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Laforest, M. J., Roewer, I. & Lang, B. F. Mitochondrial tRNAs in the lower fungus Spizellomyces punctatus: tRNA editing and UAG 'stop' codons recognized as leucine. Nucleic Acids Res. 25, 626–632 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson, R. J. & Williamson, D. H. Extrachromosomal DNA in the Apicomplexa. Microbiol. Mol. Biol. Rev. 61, 1–16 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yasuhira, S. & Simpson, L. Phylogenetic affinity of mitochondria of Euglena gracilis and kinetoplastids using cytochrome oxidase I and hsp60. J. Mol. Evol. 44, 341– 347 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Lovett, P. S. et al. UGA can be decoded as tryptophan at low efficiency in Bacillus subtilis. J. Bacteriol. 173, 1810–1812 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomita, K., Ueda, T. & Watanabe, K. The presence of pseudouridine in the anticodon alters the genetic code: a possible mechanism for assignment of the AAA lysine codon as asparagine in echinoderm mitochondria. Nucleic Acids Res. 27, 1683–1689 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horie, N. et al. Modified nucleosides in the first positions of the anticodons of tRNA(Leu)4 and tRNA(Leu)5 from Escherichia coli. Biochemistry 38, 207–217 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  • Tomita, K., Ueda, T. & Watanabe, K. 5-formylcytidine (f5C) found at the wobble position of the anticodon of squid mitochondrial tRNA(Met)CAU. Nucleic Acids Symp. Ser. 37, 197–198 ( 1997).

    CAS  Google Scholar 

  • Watanabe, Y. et al. Primary sequence of mitochondrial tRNA(Arg) of a nematode Ascaris suum: occurrence of unmodified adenosine at the first position of the anticodon. Biochim. Biophys. Acta 1350, 119–122 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Boren, T. et al. Undiscriminating codon reading with adenosine in the wobble position . J. Mol. Biol. 230, 739– 749 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Grimm, M., Brunen-Nieweler, C., Junker, V., Heckmann, K. & Beier, H. The hypotrichous ciliate Euplotes octocarinatus has only one type of tRNACys with GCA anticodon encoded on a single macronuclear DNA molecule. Nucleic Acids Res. 26, 4557–4565 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe, K. & Osawa, S. in tRNA: Structure, Biosynthesis, and Function (eds Söll, D. & RajBhandary, U.) 225– 250 (American Society for Microbiology, Washington, 1995).

    Book  Google Scholar 

  • Yokoyama, S. & Nishimura, S. in tRNA: Structure, Biosynthesis, and Function (eds. Söll, D. & RajBhandary, U.) 207– 223 (American Society for Microbiology, Washington 1995).

    Book  Google Scholar 

  • Björk, G. R. in Modification and Editing of RNA (eds Grosjean, H. & Benne, R.) 577–581 (American Society for Microbiology, Washington, 1998).

    Google Scholar 

  • Curran, J. F. in Modification and Editing of RNA (eds Grosjean, H. & Benne, R.) 493–516 (American Society for Microbiology, Washington, 1998).Excellent review of the base-pairing roles of normal and modified bases at the wobble position in the tRNA anticodon.

    Book  Google Scholar 

  • Motorin, Y. & Grosjean, H. in Modification and Editing of RNA (eds Grosjean, H. & Benne, R.) 543–549 (American Society for Microbiology, Washington, 1998 ).

    Google Scholar