nature.com

Supercooled liquids and the glass transition - Nature

  • ️Stillinger, Frank H.
  • ️Thu Mar 08 2001
  • Angell, C. A. Formation of glasses from liquids and biopolymers. Science 267, 1924–1935 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Blanshard, J. M. V. & Lillford, P. (eds) The Glassy State in Foods (Nottingham Univ. Press, Nottingham, 1993).

    Google Scholar 

  • Crowe, J. H., Carpenter, J. F. & Crowe, L. M. The role of vitrification in anhydrobiosis. Annu. Rev. Physiol. 60, 73–103 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Debenedetti, P. G., Stillinger, F. H., Truskett, T. M. & Lewis, C. P. Theory of supercooled liquids and glasses: energy landscape and statistical geometry perspectives. Adv. Chem. Eng. (in the press).

  • Greer, A. L. Metallic glasses. Science 267, 1947–1953 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Jenniskens, P. & Blake, D. F. Structural transitions in amorphous water ice and astrophysical implications. Science 265, 753–756 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Anderson, P. W. Through a glass lightly. Science 267, 1615 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Angell, C. A., Ngai, K. L., McKenna, G. B., McMillan, P. F. & Martin, S. W. Relaxation in glassforming liquids and amorphous solids. J. Appl. Phys. 88, 3113–3157 (2000).

    Article  ADS  CAS  Google Scholar 

  • Debenedetti, P. G. Metastable Liquids. Concepts and Principles (Princeton Univ. Press, Princeton, 1996).

    Google Scholar 

  • Turnbull, D. Under what conditions can a glass be formed? Contemp. Phys. 10, 473–488 (1969).

    Article  ADS  CAS  Google Scholar 

  • Angell, C. A. Structural instability and relaxation in liquid and glassy phases near the fragile liquid limit. J. Non-Cryst. Solids 102, 205–221 (1988).

    Article  ADS  CAS  Google Scholar 

  • Moynihan, C. T. et al. in The Glass Transition and the Nature of the Glassy State (eds Goldstein, M. & Simha, R.) Ann. NY Acad. Sci. 279, 15–36 (1976).

    Google Scholar 

  • Brüning, R. & Samwer, K. Glass transition on long time scales. Phys. Rev. B 46, 318–322 (1992).

    Article  Google Scholar 

  • Ediger, M. D., Angell, C. A. & Nagel, S. R. Supercooled liquids and glasses. J. Phys. Chem. 100, 13200–13212 (1996).

    Article  CAS  Google Scholar 

  • Vogel, H. Das temperatur-abhängigkeitsgesetz der viskosität von flüssigkeiten. Phys. Zeit. 22, 645–646 (1921).

    CAS  Google Scholar 

  • Tammann, G. & Hesse, W. Die abhängigkeit der viskosität von der temperatur bei unterkühlten flüssigkeiten. Z. Anorg. Allg. Chem. 156, 245–257 (1926).

    Article  CAS  Google Scholar 

  • Fulcher, G. S. Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 8, 339 (1925).

    Article  CAS  Google Scholar 

  • Laughlin, W. T. & Uhlmann, D. R. Viscous flow in simple organic liquids. J. Phys. Chem. 76, 2317–2325 (1972).

    Article  CAS  Google Scholar 

  • Angell, C. A. in Relaxations in Complex Systems (eds Ngai, K. & Wright, G. B.) 1 (Natl Technol. Inform. Ser., US Dept. of Commerce, Springfield, VA, 1985).

    Google Scholar 

  • Angell, C. A. Relaxation in liquids, polymers and plastic crystals—strong/fragile patterns and problems. J. Non-Cryst. Solids 131–133, 13–31 (1991).

    Article  ADS  Google Scholar 

  • Green, J. L., Ito, K., Xu, K. & Angell, C. A. Fragility in liquids and polymers: new, simple quantifications and interpretations. J. Phys. Chem. B 103, 3991–3996 (1999).

    Article  CAS  Google Scholar 

  • Novikov, V. N., Rössler, E., Malinovsky, V. K. & Surovstev, N. V. Strong and fragile liquids in percolation approach to the glass transition. Europhys. Lett. 35, 289–294 (1996).

    Article  ADS  CAS  Google Scholar 

  • Fujimori, H. & Oguni, M. Correlation index (Tgα−Tgβ)/Tgα and activation energy ratio Δɛaα/Δɛaβ as parameters characterizing the structure of liquid and glass. Solid State Commun. 94, 157–162 (1995).

    Article  ADS  CAS  Google Scholar 

  • Kivelson, D., Tarjus, G., Zhao, X. & Kivelson, S. A. Fitting of viscosity: distinguishing the temperature dependencies predicted by various models of supercooled liquids. Phys. Rev. E 53, 751–758 (1996).

    Article  ADS  CAS  Google Scholar 

  • Cummins, H. Z. Comment on “Fitting of viscosity: distinguishing the temperature dependencies predicted by various models of supercooled liquids”. Phys. Rev. E 54, 5870–5872 (1996).

    Article  ADS  CAS  Google Scholar 

  • Kohlrausch, R. Theorie des elektrischen rückstandes in der leidener flasche. Ann. Phys. Chem. (Leipzig) 91, 179–214 (1874).

    Google Scholar 

  • Williams, G. & Watts, D. C. Non-symmetrical dielectric relaxation behavior arising from a simple empirical decay function. Trans. Faraday Soc. 66, 80–85 (1970).

    Article  CAS  Google Scholar 

  • Richert, R. & Blumen, A. in Disorder Effects on Relaxational Processes (eds Richert, R. & Blumen, A.) 1–7 (Springer, Berlin, 1994).

    Book  Google Scholar 

  • Cicerone, M. T. & Ediger, M. D. Relaxation of spatially heterogeneous dynamic domains in supercooled ortho-terphenyl. J. Chem. Phys. 103, 5684–5692 (1995).

    Article  ADS  CAS  Google Scholar 

  • Cicerone, M. T. & Ediger, M. D. Enhanced translation of probe molecules in supercooled o-terphenyl: signature of spatially heterogeneous dynamics? J. Chem. Phys. 104, 7210–7218 (1996).

    Article  ADS  CAS  Google Scholar 

  • Mel'cuk, A. I., Ramos, R. A., Gould, H., Klein, W. & Mountain, R. D. Long-lived structures in fragile glass-forming liquids. Phys. Rev. Lett. 75, 2522–2525 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Hurley, M. M. & Harrowell, P. Non-gaussian behavior and the dynamical complexity of particle motion in a dense two-dimensional liquid. J. Chem. Phys. 105, 10521–10526 (1996).

    Article  ADS  CAS  Google Scholar 

  • Perera, D. N. & Harrowell, P. Measuring diffusion in supercooled liquids: the effect of kinetic inhomogeneities. J. Chem. Phys. 104, 2369–2375 (1996).

    Article  ADS  CAS  Google Scholar 

  • Perera, D. N. & Harrowell, P. Consequence of kinetic inhomogeneities in glasses. Phys. Rev. E 54, 1652–1662 (1996).

    Article  ADS  CAS  Google Scholar 

  • Donati, C., Glotzer, S. C., Poole, P. H., Kob, W. & Plimpton, S. J. Spatial correlations of mobility and immobility in a glass-forming Lennard-Jones liquid. Phys. Rev. E 60, 3107–3119 (1999).

    Article  ADS  CAS  Google Scholar 

  • Böhmer, R., Hinze, G., Diezemann, G., Geil, B. & Sillescu, H. Dynamic heterogeneity on supercooled ortho-terphenyl studied by multidimensional deuteron NMR. Europhys. Lett. 36, 55–60 (1996).

    Article  ADS  Google Scholar 

  • Wang, C.-Y. & Ediger, M. D. How long do regions of different dynamics persist in supercooled o-terphenyl? J. Phys. Chem. B 103, 4177–4184 (1999).

    Article  CAS  Google Scholar 

  • Vidal Russell, E. & Israeloff, N. E. Direct observation of molecular cooperativity near the glass transition. Nature 408, 695–698 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Ediger, M. D. Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem. 51, 99–128 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Fujara, F., Geil, B., Sillescu, H. H. & Fleischer, G. Translational and rotational diffusion in supercooled orthoterphenyl close to the glass transition. Z. Phys. B Cond. Matt. 88, 195–204 (1992).

    Article  ADS  CAS  Google Scholar 

  • Johari, G. P. Intrinsic mobility of molecular glasses. J. Chem. Phys. 58, 1766–1770 (1973).

    Article  ADS  CAS  Google Scholar 

  • Johari, G. P. & Goldstein, M. Viscous liquids and the glass transition. II. Secondary relaxations in glasses of rigid molecules. J. Chem. Phys. 53, 2372–2388 (1970).

    Article  ADS  CAS  Google Scholar 

  • Rössler, E., Warschewske, U., Eiermann, P., Sokolov, A. P. & Quitmann, D. Indications for a change of transport mechanism in supercooled liquids and the dynamics close and below Tg . J. Non-Cryst. Solids 172–174, 113–125 (1994).

    Article  ADS  Google Scholar 

  • Stillinger, F. H. A topographic view of supercooled liquids and glass formation. Science 267, 1935–1939 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Kauzmann, W. The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev. 43, 219–256 (1948).

    Article  CAS  Google Scholar 

  • Simon, F. Über den zustand der unterkühlten flüssigkeiten und glässer. Z. Anorg. Allg. Chem. 203, 219–227 (1931).

    Article  CAS  Google Scholar 

  • Wolynes, P. G. Aperiodic crystals: biology, chemistry and physics in a fugue with stretto. AIP Conf. Proc. 180, 39–65 (1988).

    Article  ADS  CAS  Google Scholar 

  • Wolynes, P. G. Entropy crises in glasses and random heteropolymers. J. Res. Natl Inst. Standards Technol. 102, 187–194 (1997).

    Article  CAS  Google Scholar 

  • Angell, C. A. Landscapes with megabasins: polyamorphism in liquids and biopolymers and the role of nucleation in folding and folding diseases. Physica D 107, 122–142 (1997).

    Article  ADS  CAS  Google Scholar 

  • Gibbs, J. H. & DiMarzio, E. A. Nature of the glass transition and the glassy state. J. Chem. Phys. 28, 373–383 (1958).

    Article  ADS  CAS  Google Scholar 

  • Adam, G. & Gibbs, J. H. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139–146 (1965).

    Article  ADS  CAS  Google Scholar 

  • Richert, R. & Angell, C. A. Dynamics of glass-forming liquids. V. On the link between molecular dynamics and configurational entropy. J. Chem. Phys. 108, 9016–9026 (1998).

    Article  ADS  CAS  Google Scholar 

  • Williams, M. L., Landel, R. F. & Ferry, J. D. The temperature dependence of the relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701–3707 (1955).

    Article  CAS  Google Scholar 

  • Ito, K., Moynihan, C. T. & Angell, C. A. Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water. Nature 398, 492–495 (1999).

    Article  ADS  CAS  Google Scholar 

  • Goldstein, M. Viscous liquids and the glass transition: a potential energy barrier picture. J. Chem. Phys. 51, 3728–3739 (1969).

    Article  ADS  CAS  Google Scholar 

  • Frauenfelder, H., Sligar, S. G. & Wolynes, P. G. The energy landscapes and motions of proteins. Science 254, 1598–1603 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Nienhaus, G. U., Müller, J. D., McMahon, B. H. & Frauenfelder, H. Exploring the conformational energy landscape of proteins. Physica D 107, 297–311 (1997).

    Article  ADS  CAS  Google Scholar 

  • Abkevich, V. I., Gutin, A. M. & Shakhnovich, E. I. Free energy landscape for protein folding kinetics: intermediates, traps, and multiple pathways in theory and lattice model simulations. J. Chem. Phys. 101, 6052–6062 (1994).

    Article  ADS  CAS  Google Scholar 

  • Saven, J. G., Wang, J. & Wolynes, P. G. Kinetics of protein folding: the dynamics of globally connected rough energy landscapes with biases. J. Chem. Phys. 101, 11037–11043 (1994).

    Article  ADS  CAS  Google Scholar 

  • Wang, J., Onuchic, J. & Wolynes, P. Statistics of kinetic pathways on biased rough energy landscapes with applications to protein folding. Phys. Rev. Lett. 76, 4861–4864 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Plotkin, S. S., Wang, J. & Wolynes, P. G. Correlated energy landscape model for finite, random heteropolymers. Phys. Rev. E 53, 6271–6296 (1996).

    Article  ADS  CAS  Google Scholar 

  • Becker, O. M. & Karplus, M. The topology of multidimensional potential energy surfaces: theory and application to peptide structure and kinetics. J. Chem. Phys. 106, 1495–1517 (1997).

    Article  ADS  CAS  Google Scholar 

  • Dill, K. A. & Chan, H. S. From Levinthal to pathways and funnels. Nature Struct. Biol. 4, 10–19 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Klepeis, J. L., Floudas, C. A., Morikis, D. & Lambris, J. D. Predicting peptide structure using NMR data and deterministic global optimization. J. Comp. Chem. 20, 1354–1370 (1999).

    Article  CAS  Google Scholar 

  • Lacks, D. J. Localized mechanical instabilities and structural transformations in silica glass under high pressure. Phys. Rev. Lett. 80, 5385–5388 (1998).

    Article  ADS  CAS  Google Scholar 

  • Malandro, D. L. & Lacks, D. J. Volume dependence of potential energy landscapes in glasses. J. Chem. Phys. 107, 5804–5810 (1997).

    Article  ADS  CAS  Google Scholar 

  • Malandro, D. L. & Lacks, D. J. Relationships of shear-induced changes in the potential energy landscape to the mechanical properties of ductile glasses. J. Chem. Phys. 110, 4593–4601 (1999).

    Article  ADS  CAS  Google Scholar 

  • Malandro, D. L. & Lacks, D. J. Molecular-level instabilities and enhanced self-diffusion in flowing liquids. Phys. Rev. Lett. 81, 5576–5579 (1998).

    Article  ADS  CAS  Google Scholar 

  • Schulz, M. Energy landscape, minimum points, and non-Arrhenius behavior of supercooled liquids. Phys. Rev. B 57, 11319–11333 (1998).

    Article  ADS  CAS  Google Scholar 

  • Sastry, S., Debenedetti, P. G. & Stillinger, F. H. Signatures of distinct dynamical regimes in the energy landscape of a glass-forming liquid. Nature 393, 554–557 (1998).

    Article  ADS  CAS  Google Scholar 

  • Keyes, T. Dependence of supercooled liquid dynamics on elevation in the energy landscape. Phys. Rev. E 59, 3207–3211 (1999).

    Article  ADS  CAS  Google Scholar 

  • Debenedetti, P. G., Stillinger, F. H., Truskett, T. M. & Roberts, C. J. The equation of state of an energy landscape. J. Phys. Chem. B 103, 7390–7397 (1999).

    Article  CAS  Google Scholar 

  • Jonsson, H. & Andersen, H. C. Icosahedral ordering in the Lennard-Jones crystal and glass. Phys. Rev. Lett. 60, 2295–2298 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Angelani, L., Di Leonardo, R., Ruocco, G., Scala, A. & Sciortino, F. Saddles in the energy landscape probed by supercooled liquids. Phys. Rev. Lett. 85, 5356–5359 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Stillinger, F. H., Debenedetti, P. G. & Sastry, S. Resolving vibrational and structural contributions to isothermal compressibility. J. Chem. Phys. 109, 3983–3988 (1998).

    Article  ADS  CAS  Google Scholar 

  • Stillinger, F. H. & Debenedetti, P. G. Distinguishing vibrational and structural equilibration contributions to thermal expansion. J. Phys. Chem. B 103, 4052–4059 (1999).

    Article  CAS  Google Scholar 

  • Sciortino, F., Kob, W. & Tartaglia, P. Inherent structure entropy of supercooled liquids. Phys. Rev. Lett. 83, 3214–3217 (1999).

    Article  ADS  CAS  Google Scholar 

  • Büchner, S. & Heuer, A. Potential energy landscape of a model glass former: thermodynamics, anharmonicities, and finite size effects. Phys. Rev. E 60, 6507–6518 (1999).

    Article  ADS  Google Scholar 

  • Scala, A., Starr, F. W., La Nave, E., Sciortino, F. & Stanley, H. E. Configurational entropy and diffusivity in supercooled water. Nature 406, 166–169 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Prielmeier, F. X., Lang, E. W., Speedy, R. J. & Lüdemann, H.-D. Diffusion in supercooled water to 300 Mpa. Phys. Rev. Lett. 59, 1128–1131 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Mackenzie, J. D. Viscosity-temperature relationship for network liquids. J. Am. Ceram. Soc. 44, 598–601 (1961).

    Article  CAS  Google Scholar 

  • Greet, R. J. & Turnbull, D. Glass transition in o-terphenyl. J. Chem. Phys. 46, 1243–1251 (1967).

    Article  ADS  CAS  Google Scholar 

  • Stillinger, F. H. & Hodgdon, J. A. Translation-rotation paradox for diffusion in fragile glass-forming liquids. Phys. Rev. E 50, 2064–2068 (1994).

    Article  ADS  CAS  Google Scholar 

  • Tarjus, G. & Kivelson, D. Breakdown of the Stokes-Einstein relation in supercooled liquids. J. Chem. Phys. 103, 3071–3073 (1995).

    Article  ADS  CAS  Google Scholar 

  • Liu, C. Z.-W. & Openheim, I. Enhanced diffusion upon approaching the kinetic glass transition. Phys. Rev. E 53, 799–802 (1996).

    Article  ADS  CAS  Google Scholar 

  • Geszti, T. Pre-vitrification by viscosity feedback. J. Phys. C 16, 5805–5814 (1983).

    Article  ADS  CAS  Google Scholar 

  • Bengtzelius, U., Götze, W. & Sjölander, A. Dynamics of supercooled liquids and the glass transition. J. Phys. C 17, 5915–5934 (1984).

    Article  ADS  CAS  Google Scholar 

  • Götze, W. & Sjögren, L. Relaxation processes in supercooled liquids. Rep. Prog. Phys. 55, 241–376 (1992).

    Article  ADS  Google Scholar 

  • Götze, W. & Sjögren, L. The mode coupling theory of structural relaxations. Transp. Theory Stat. Phys. 24, 801–853 (1995).

    Article  ADS  MATH  Google Scholar 

  • Götze, W. Recent tests of the mode-coupling theory for glassy dynamics. J. Phys. Cond. Matt. 11, A1–A45 (1999).

    Article  ADS  Google Scholar 

  • Kob, W. Computer simulations of supercooled liquids and glasses. J. Phys. Cond. Matt. 11, R85–R115 (1999).

  • Kob, W. & Andersen, H. C. Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture: the van Hove correlation function. Phys. Rev. E 51, 4626–4641 (1995).

    Article  ADS  CAS  Google Scholar 

  • Kivelson, D., Kivelson, S. A., Zhao, X., Nussinov, Z. & Tarjus, G. A thermodynamic theory of supercooled liquids. Physica A 219, 27–38 (1995).

    Article  ADS  CAS  Google Scholar 

  • Kivelson, D. & Tarjus, G. SuperArrhenius character of supercooled glass-forming liquids. J. Non-Cryst. Solids 235–237, 86–100 (1998).

    Article  ADS  Google Scholar 

  • Kivelson, D. & Tarjus, G. The Kauzmann paradox interpreted via the theory of frustration-limited domains. J. Chem. Phys. 109, 5481–5486 (1998).

    Article  ADS  CAS  Google Scholar 

  • Sastry, S. The relationship between fragility, configurational entropy and the potential energy landscape of glass-forming liquids. Nature 409, 164–167 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Speedy, R. J. Relations between a liquid and its glasses. J. Phys. Chem. B 103, 4060–4065 (1999).

    Article  CAS  Google Scholar 

  • Keyes, T. Instantaneous normal mode approach to liquid state dynamics. J. Phys. Chem. A 101, 2921–2930 (1997).

    Article  CAS  Google Scholar 

  • Kirkpatrick, T. R. & Wolynes, P. G. Stable and metastable states in mean-field Potts and structural glasses. Phys. Rev. B 36, 8552–8564 (1987).

    Article  ADS  CAS  Google Scholar 

  • Kirkpatrick, T. R., Thirumalai, D. & Wolynes, P. G. Scaling concepts for the dynamics of viscous liquids near an ideal glassy state. Phys. Rev. A 40, 1045–1054 (1989).

    Article  ADS  CAS  Google Scholar 

  • Mézard, M. & Parisi, G. Thermodynamics of glasses: a first principles computation. Phys. Rev. Lett. 82, 747–750 (1999).

    Article  ADS  Google Scholar 

  • Berendsen, H. J., Grigera, J. R. & Stroatsma, T. P. The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271 (1987).

    Article  CAS  Google Scholar 

  • Stillinger, F. H. Supercooled liquids, glass transitions, and the Kauzmann paradox. J. Chem. Phys. 88, 7818–7825 (1988).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Santen, L. & Krauth, W. Absence of thermodynamic phase transition in a model glass former. Nature 405, 550–551 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Wilks, J. The Properties of Liquid and Solid Helium (Clarendon, Oxford, 1967).

    Google Scholar 

  • Rastogi, S., Höhne, G. W. H. & Keller, A. Unusual pressure-induced phase behavior in crystalline Poly(4-methylpentene-1): calorimetric and spectroscopic results and further implications. Macromolecules 32, 8897–8909 (1999).

    Article  ADS  CAS  Google Scholar 

  • Greer, A. L. Too hot to melt. Nature 404, 134–135 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Stillinger, F. H. Exponential multiplicity of inherent structures. Phys. Rev. E 59, 48–51 (1999).

    Article  ADS  CAS  Google Scholar 

  • Stillinger, F. H. Enumeration of isobaric inherent structures for the fragile glass former o-terphenyl. J. Phys. Chem. B 102, 2807–2810 (1998).

    Article  CAS  Google Scholar